設(shè)函數(shù)f(x)=
|x+1|+|x-2|+a

(Ⅰ)當(dāng)a=-5時(shí),求函數(shù)f(x)的定義域;
(Ⅱ)若函數(shù)f(x)的定義域?yàn)镽,試求a的取值范圍.
考點(diǎn):函數(shù)恒成立問題,函數(shù)的定義域及其求法
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(Ⅰ)易知|x+1|+|x-2|-5≥0,在同一坐標(biāo)系中作出函數(shù)y=|x+1|+|x-2|和y=5 的圖象,由圖象可求;
(Ⅱ)由題意可知|x+1|+|x-2|≥-a恒成立,由圖象求出|x+1|+|x-2|的最小值即可;
解答: 解:(Ⅰ)由題設(shè)知:|x+1|+|x-2|-5≥0,
如圖,在同一坐標(biāo)系中作出函數(shù)y=|x+1|+|x-2|和y=5 的圖象(如圖所示)
得定義域?yàn)椋?∞,-2]∪[3,+∞).
(Ⅱ)由題設(shè)知,當(dāng)x∈R 時(shí),恒有|x+1|+|x-2|+a≥-a,即|x+1|+|x-2|≥-a,
又由(Ⅰ)知|x+1|+|x-2|≥3,
當(dāng)且僅當(dāng) (x+1)(x-2)≤0,即-1≤x≤2取等號(hào),
∴-a≤3⇒a≥-3.
點(diǎn)評(píng):該題卡函數(shù)的定義域及其求法,考查函數(shù)恒成立問題,考查數(shù)形結(jié)合思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

 1895年,在倫敦有100塊男性頭蓋骨被挖掘出土,經(jīng)考證,頭蓋骨的主人死于1665-1666年之間的大瘟疫.人類學(xué)家分別測量了這些頭蓋骨的寬度,得到的頻率分布直方圖如圖所示.
(Ⅰ)求圖中m的值,并估計(jì)當(dāng)年英國男性頭蓋骨寬度的中位數(shù)(填寫下表):
m 中位數(shù)
   
(Ⅱ)若從[140,145)、[145,150)兩組中用分層抽樣的方法抽取5塊頭蓋骨做深層檢測,則從這兩組中應(yīng)抽取的塊數(shù)分別是多少?
(Ⅲ)專家要從深層檢測過的頭蓋骨中隨機(jī)抽取兩塊進(jìn)行復(fù)原,求被抽中的兩塊中至少有[145,150)組中一塊的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知α∈R,sinα+3cosα=
5
,則tan2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),1-4+9-16+25=1+2+3=+4+5,
則推廣到第n個(gè)等式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二項(xiàng)式(x 
3
2
+x 
1
3
n的展開式中各項(xiàng)系數(shù)和是256,則展開式中x5的系數(shù)是
 
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若角α的終邊經(jīng)過點(diǎn)P(3,2),則tanα的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+sinα)(1-cosα)=1,則(1-sinα)(1+cosα)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
x2+1
,g(x)=
ex
x
,如果對(duì)任意的x1,x2∈(0,+∞),不等式
f(x1)
k
g(x2)
k+1
恒成立,則正數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,復(fù)數(shù)
-5+i
2-3i
的模為( 。
A、0
B、1
C、2
D、
2

查看答案和解析>>

同步練習(xí)冊答案