【題目】下列命題是真命題的是(

A.有兩個面相互平行,其余各面都是平行四邊形的多面體是棱柱

B.正四面體是四棱錐

C.有一個面是多邊形,其余各面都是三角形的多面體叫做棱錐

D.正四棱柱是平行六面體

【答案】D

【解析】

依次判斷每個選項:缺少條件,除去底面,其余各面相鄰兩面的公共邊都互相平行;正四面體是三棱錐,故錯誤;缺少條件,這些三角形有一個公共頂點;正確,得到答案.

A. 有兩個面相互平行,其余各面都是平行四邊形的多面體是棱柱

缺少條件:除去底面,其余各面相鄰兩面的公共邊都互相平行,故錯誤;

B. 正四面體是四棱錐

正四面體是三棱錐,故錯誤;

C. 有一個面是多邊形,其余各面都是三角形的多面體叫做棱錐

缺少條件:這些三角形有一個公共頂點,故錯誤;

D. 正四棱柱是平行六面體

根據(jù)平行六面體的定義知正確;

故選:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左,右焦點分別為,,點P為雙曲線C右支上異于頂點的一點,的內(nèi)切圓與x軸切于點,且直線經(jīng)過線段的中點且垂直于線段,則雙曲線C的方程為________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某知名電商在雙十一購物狂歡節(jié)中成交額再創(chuàng)新高,日單日成交額達(dá)億元.某店主在此次購物狂歡節(jié)期間開展了促銷活動,為了解買家對此次促銷活動的滿意情況,隨機(jī)抽取了參與活動的位買家,調(diào)查了他們的年齡層次和購物滿意情況,得到年齡層次的頻率分布直方圖和購物評價為滿意的年齡層次頻數(shù)分布表.年齡層次的頻率分布直方圖:

“購物評價為滿意”的年齡層次頻數(shù)分布表:

年齡(歲)

頻數(shù)

1)估計參與此次活動的買家的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點值做代表);

2)若年齡在歲以下的稱為青年買家,年齡在歲以上(含歲)的稱為中年買家,完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為中、青年買家對此次活動的評價有差異?

評價滿意

評價不滿意

合計

中年買家

青年買家

合計

附:參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中常數(shù).

(1)當(dāng)時,的最小值;

(2)討論函數(shù)的奇偶性,并說明理由;

(3)當(dāng)時,是否存在實數(shù),使得不等式對任意恒成立?若存在,求出所有滿足條件的的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某沿海城市的海邊有兩條相互垂直的直線型公路、,海岸邊界近似地看成一條曲線段.為開發(fā)旅游資源,需修建一條連接兩條公路的直線型觀光大道,且直線與曲線有且僅有一個公共點P(即直線與曲線相切),如圖所示.若曲線段是函數(shù)圖像的一段,點M、的距離分別為8千米和1千米,點N的距離為10千米,點P的距離為2千米.分別為x,y軸建立如圖所示的平面直角坐標(biāo)系.

(1)求曲線段的函數(shù)關(guān)系式,并指出其定義域;

2)求直線的方程,并求出公路的長度(結(jié)果精確到1米).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

1)若,證明:函數(shù)在區(qū)間上是單調(diào)增函數(shù);

2)求函數(shù)在區(qū)間上的最大值;

3)若函數(shù)的圖像過原點,且的導(dǎo)數(shù),當(dāng)時,函數(shù)過點的切線至少有2條,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某組委會要從五名志愿者中選派四人分別從事翻譯導(dǎo)游禮儀司機(jī)四項不同工作,若其中甲不能從事翻譯工作,乙不能從事導(dǎo)游工作,其余三人均能從事這四項工作,則不同的選派方案共有________種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題中,真命題是( 。

A.和兩條異面直線都相交的兩條直線是異面直線

B.和兩條異面直線都相交于不同點的兩條直線是異面直線

C.和兩條異面直線都垂直的直線是異面直線的公垂線

D.、是異面直線,是異面直線,則、是異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓Eab0)的離心率e.

1)若點P1,)在橢圓E上,求橢圓E的標(biāo)準(zhǔn)方程;

2)若D2,0)在橢圓內(nèi)部,過點D斜率為的直線交橢圓EM.N兩點,|MD|2|ND|,求橢圓E的方程.

查看答案和解析>>

同步練習(xí)冊答案