|
|
一個幾何體的三視圖如圖所示,則該幾何體的體積為
|
[ ] |
A. |
12
|
B. |
11
|
C. |
|
D. |
|
|
|
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知橢圓中心在坐標(biāo)原點焦點在x軸上,離心率為,它的一個頂點為拋物線x2=4y的焦點.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線y=x-1與拋物線相切于點A,求以A為圓心且與拋物線的準(zhǔn)線相切的圓的方程;
(Ⅲ)若斜率為1的直線交橢圓于M、N兩點,求△OMN面積的最大值(O為坐標(biāo)原點).
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知角α的頂點在原點,始邊與x軸的正半軸重合,終邊經(jīng)過點P(-1,).
(Ⅰ)求sin2α-tanα的值;
(Ⅱ)若函數(shù)f(x)=cos(x+α)cosα+sin(x+α)sinα,求函數(shù)g(x)=f(-2x)-2f2(x)+1在區(qū)間[0,]上的取值范圍.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
由函數(shù)的圖象與直線及y=1,所圍成的一個封閉圖形的面積是________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知數(shù)列{an}的前n項的平均數(shù)的倒數(shù)為
(Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè),試比較cn+1與cn(n∈N*)的大小關(guān)系;
(Ⅲ)設(shè)函數(shù),是否存在最大的實數(shù)λ,當(dāng)x≤λ時,對于一切正整數(shù)n,都有f(x)≤0成立?
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
函數(shù)的圖象大致是
|
[ ] |
A. |
|
B. |
|
C. |
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
在區(qū)間(0,1)上任意取兩個實數(shù)a,b,則a+b<的概率為________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)函數(shù)y=f(x)在區(qū)間(a,b)的導(dǎo)函數(shù)(x),(x)在區(qū)間(a,b)的導(dǎo)函數(shù)(x),若在區(qū)間(a,b)上的(x)<0恒成立,則稱函數(shù)f(x)在區(qū)間(a,b)上為“凸函數(shù)”,已知,若當(dāng)實數(shù)m滿足|m|≤2時,函數(shù)f(x)在區(qū)間(a,b)上為“凸函數(shù)”,則b-a的最大值為
|
[ ] |
A. |
1
|
B. |
2
|
C. |
3
|
D. |
4
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
下表是最近十屆奧運會的年份、屆別、主辦國,以及主辦國在上屆獲得的金牌數(shù)、當(dāng)屆獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù):
某體育愛好組織,利用上表研究所獲金牌數(shù)與主辦奧運會之間的關(guān)系,求出主辦國在上屆所獲金牌數(shù)(設(shè)為x)與在當(dāng)屆所獲金牌數(shù)(設(shè)為y)之間的線性回歸方程=,在2008年第29屆北京奧運會上英國獲得19塊金牌,則據(jù)此線性回歸方程估計在2012年第30屆倫敦奧運會上英國將獲得的金牌數(shù)為(所有金牌數(shù)精確到整數(shù))
|
[ ] |
A. |
29塊
|
B. |
30塊
|
C. |
31塊
|
D. |
32塊
|
|
|
查看答案和解析>>