精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=ax3+bx2經過點M(1,4),在點M處的切線恰與直線x+9y+5=0垂直

(Ⅰ)求a,b的值

(Ⅱ)若函數f(x)在區(qū)間[m-1,m+1]上單調遞增,求實數m的取值范圍.

答案:
解析:

  解:(1)∵

  由已知得,即

  ∴a=1,b=3 6分

  (2)由(1)知

  令解得x≤-2或x≥0

  ∴f(x)在區(qū)間(-∞,-2)和[0,+∞]上單調遞增

  若f(x)在[m-1,m+1]上單調遞增

  則[m-1,m+1](-∞,-2)或[m-1,m+1][0,+∞]

  ∴m+1≤-2或m-1≥0∴m≤-3或m≥1

  所以m的取值范圍是m≤-3或m≥1 12分


練習冊系列答案
相關習題

科目:高中數學 來源:2012-2013學年江西省南昌市高一5月聯(lián)考數學卷(解析版) 題型:解答題

已知函數f(x)= (a、b為常數),且方程f(x)-x+12=0有兩個實根為x1=3,x2=4.

(1)求函數f(x)的解析式;

(2)設k>1,解關于x的不等式f(x)< .

 

查看答案和解析>>

科目:高中數學 來源:2015屆遼寧盤錦市高一第一次階段考試數學試卷(解析版) 題型:解答題

(12分)已知函數f(x)= (a,b為常數,且a≠0),滿足f(2)=1,方程f(x)=x有唯一實數解,求函數f(x)的解析式和f[f(-4)]的值.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年山東省萊蕪市高三上學期10月測試理科數學 題型:解答題

(本小題滿分l2分)

已知函數f(x)=a

 

(1)求證:函數yf(x)在(0,+∞)上是增函數;

 

(2)f(x)<2x在(1,+∞)上恒成立,求實數a的取值范圍.

 

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年湖南省十二校高三第一次聯(lián)考數學文卷 題型:解答題

( (本小題滿分13分)

已知函數f(x)=(a-1)xaln(x-2),(a<1).

(1)討論函數f(x)的單調性;

(2)設a<0時,對任意x1、x2∈(2,+∞),<-4恒成立,求a的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2014屆黑龍江省高一期末考試文科數學 題型:解答題

(12分)已知函數f(X)=㏒a(ax-1) (a>0且a≠1)

     (1)求函數的定義域   (2)討論函數f(X)的單調性

 

查看答案和解析>>

同步練習冊答案