已知x∈[0,5],y∈[0,5],
(1)若x,y都是正整數(shù),求:x-y>1的概率
(2)求:|x-y|<1的概率.
考點(diǎn):幾何概型
專題:綜合題,概率與統(tǒng)計(jì)
分析:(1)x,y都是正整數(shù),故基本事件是有限的,利用古典概型概率公式,可求x-y>1的概率
(2)確定|x-y|<1表示兩條平行直線間的部分,利用面積為測(cè)度,可求:|x-y|<1的概率.
解答: 解:(1)總事件:5×5=25.
設(shè)A事件為x-y>1,所以A有:(3,1)(4,1)(5,1)(4,2)(5,2)(5,3)
所以P(A)=
6
25

(2)|x-y|<1表示兩條平行直線間的部分,
所以P=
25-16
25
=
9
25
點(diǎn)評(píng):本題考查概率的計(jì)算,確定基本事件是否有限是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)y=f(x)滿足y=(x+
5
2
)是偶函數(shù),(x-
5
2
)f′(x)>0,且x1<x2,則“f(x1)>f(x2)”是“x1+x2<5”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
25
x
-(a2+b2)(a∈R,b∈R).
(Ⅰ)現(xiàn)將一枚質(zhì)地均勻的正四面體骰子(各面分別寫著1,2,3,4一個(gè)數(shù)字)拋擲兩次,所得向下的一面上的數(shù)字分別為a和b的值,求函數(shù)f(x)在(0,+∞)內(nèi)有兩個(gè)零點(diǎn)的概率;
(Ⅱ)若a,b都是從區(qū)間[0,4]上隨機(jī)取的一個(gè)實(shí)數(shù),求函數(shù)f(x)在(0,+∞)內(nèi)存在零點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P(0,
A
2
)是函數(shù)y=Asin(
3
x+φ)(其中A>0,φ∈[0,π])的圖象與y軸的交點(diǎn),點(diǎn)Q、R是它與x軸的兩個(gè)交點(diǎn).
(Ⅰ)求φ的值;
(Ⅱ)若PQ⊥PR,求A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cosx+sinx,g(x)=
2
cos(x+
π
4
)(x∈R).
(Ⅰ)求函數(shù)F(x)=f(x)•g(x)+f2(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)若f(x)=2g(x),求
1+sin2x
cos2x-sinxcosx
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高校從參加今年自主招生考試的學(xué)生中隨機(jī)抽取容量為50的學(xué)生成績(jī)樣本,得頻率分布表如下:
組號(hào) 分組 頻數(shù) 頻率
第一組 [230,235) 8 0.16
第二組 [235,240) 0.24
第三組 [240,245) 15
第四組 [245,250) 10 0.20
第五組 [250,255] 5 0.10
合              計(jì) 50 1.00
(1)寫出表中①②位置的數(shù)據(jù);
(2)估計(jì)成績(jī)不低于240分的學(xué)生約占多少;
(3)為了選拔出更優(yōu)秀的學(xué)生,高校決定在第三、四、五組中用分層抽樣法抽取6名學(xué)生進(jìn)行第二輪考核,分別求第三、四、五各組參加考核人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知A(-2,m)是角α終邊上的一點(diǎn),且sinα=-
5
5
,求cosα的值.
(2)若集合M={θ|sinθ≥
1
2
,0≤θ≤π},N={θ|cosθ≤
1
2
,0≤θ≤π},求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(-1,0),B(1,0),動(dòng)點(diǎn)P到A點(diǎn)的距離與到B點(diǎn)的距離的比為定值a(a>0).
(1)求P點(diǎn)的軌跡方程;
(2)點(diǎn)P的軌跡是什么圖形?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

體育課下課后,老師要求體育委員把5個(gè)相同的籃球、3個(gè)相同的排球、2個(gè)相同的橄欖球排成一排放好,則不同的放法有
 
種.

查看答案和解析>>

同步練習(xí)冊(cè)答案