【題目】已知橢圓的短軸長為4,離心率為,斜率不為0的直線l與橢圓恒交于A,B兩點,且以AB為直徑的圓過橢圓的右頂點M

1)求橢圓的標(biāo)準(zhǔn)方程;

2)直線l是否過定點,如果過定點,求出該定點的坐標(biāo);如果不過定點,請說明理由.

【答案】1;(2)直線過定點

【解析】

1)由題可知,,再結(jié)合,即可求出的值,從而得出橢圓的標(biāo)準(zhǔn)方程;

2)因為直線l斜率不為,所以設(shè)直線lxty+m,聯(lián)立直線方程和橢圓方程,利用根與系數(shù)的關(guān)系得,,再根據(jù)以AB為直徑的圓過橢圓的右頂點,可得0,從而求出,即可得出定點坐標(biāo).

1)由題,,

所以橢圓的標(biāo)準(zhǔn)方程為

2)由題設(shè)直線,

聯(lián)立直線方程和橢圓方程,得,

,,

因為以AB為直徑的圓過橢圓的右頂點,

所以,

整理得,

又當(dāng)時,直線過橢圓右定點,此時直線與直線不可能垂直,

,

∴直線過定點

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一張矩形白紙ABCD,AB=10,AD=,E,F分別為AD,BC的中點,現(xiàn)分別將△ABE,△CDF沿BE,DF折起,且A、C在平面BFDE同側(cè),下列命題正確的是____________(寫出所有正確命題的序號)

①當(dāng)平面ABE∥平面CDF時,AC∥平面BFDE

②當(dāng)平面ABE∥平面CDF時,AE∥CD

③當(dāng)A、C重合于點P時,PG⊥PD

④當(dāng)A、C重合于點P時,三棱錐P-DEF的外接球的表面積為150

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知內(nèi)角的角平分線.

(1)用正弦定理證明: ;

2)若,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=,an+1=3an-1(n∈N*).

(1)若數(shù)列{bn}滿足bn=an-,求證:{bn}是等比數(shù)列;

(2)求數(shù)列{an}的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,角A、B、C的對邊分別是a、b、c,且2sin2A+3cos(B+C)=0.

(1)求角A的大;

(2)若△ABC的面積S=,求sinB+sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)判斷并證明的單調(diào)性;

(Ⅱ)若不等式,對恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),存在,使得函數(shù)在區(qū)間上有兩個極值點,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),在點處的切線方程為,求(1)實數(shù)的值;(2)函數(shù)的單調(diào)區(qū)間以及在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)若展開式中奇數(shù)項的二項式系數(shù)和為128,求展開式中二項式系數(shù)最大的項的系數(shù);

2)若展開式前三項的二項式系數(shù)和等于37,求展開式中系數(shù)最大的項.

查看答案和解析>>

同步練習(xí)冊答案