【題目】已知首項為的等比數(shù)列不是遞減數(shù)列,其前n項和為,且成等差數(shù)列。

1)求數(shù)列的通項公式;

2)設(shè),求數(shù)列的最大項的值與最小項的值。

【答案】1;(2)最大項的值為,最小項的值為

【解析】

試題

(1)根據(jù)成等差數(shù)列,利用等比數(shù)列通項公式和前項和公式,展開.利用等比數(shù)列不是遞減數(shù)列,可得,進而求通項.

(2)首先根據(jù)(1)得到,進而得到,但是等比數(shù)列的公比是負數(shù),所以分兩種情況:當(dāng)?shù)漠?dāng)n為奇數(shù)時,n的增大而減小,所以;當(dāng)n為偶數(shù)時,n的增大而增大,所以,然后可判斷最值.

試題解析:

1)設(shè)的公比為q。由成等差數(shù)列,得

.

,則.

不是遞減數(shù)列且,所以.

.

2)由(1)利用等比數(shù)列的前項和公式,可得得

當(dāng)n為奇數(shù)時,n的增大而減小,所以,

.

當(dāng)n為偶數(shù)時,n的增大而增大,所以,

.

綜上,對于,總有,

所以數(shù)列最大項的值為,最小值的值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知是橢圓的右焦點,直線與橢圓相切于點

1)若,求;

2)若,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調(diào)查.隨機抽取男女駕駛員各人,進行問卷測評,所得分數(shù)的頻率分布直方圖如圖所示在分以上為交通安全意識強.

的值,并估計該城市駕駛員交通安全意識強的概率;

已知交通安全意識強的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關(guān);

安全意識強

安全意識不強

合計

男性

女性

合計

用分層抽樣的方式從得分在分以下的樣本中抽取人,再從人中隨機選取人對未來一年內(nèi)的交通違章情況進行跟蹤調(diào)查,求至少有人得分低于分的概率.

附:其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元2019年,石室2160歲!文翁興學(xué)2160周年紀(jì)念活動于2019119日在石室中學(xué)文廟校區(qū)運動場隆重召開,會場是由一個長,寬的長方形及兩個以長方形寬為直徑的半圓相接組成,整個會場關(guān)于中軸線對稱,圖形如下.

1)若、兩位同學(xué)分別在左右兩個半圓弧上值勤,則、兩位同學(xué)在圓弧什么位置時相距最遠,距離為多少?并說明原因.

2)在(1)問的情況下,若要在主會臺后的會場邊界上關(guān)于中軸線對稱的兩點、處分別放置兩個音響,為了達到最好聽覺效果,兩個音響的距離要足夠大,同時兩位同學(xué)聽到兩個音響傳來的聲音時間差不超過0.18秒,求音響距中軸線距離約為多少時為最佳放置點.(注:不超過0.18秒以秒計算,聲音在空氣中的傳播速度為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20191017日是我國第6個“扶貧日”,某醫(yī)院開展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動,現(xiàn)有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有( )

A.18B.20C.22D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為平行四邊形,為直角三角形且,是等邊三角形.

(1)求證:;

(2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x(lnxax)有兩個極值點,則實數(shù)a的取值范圍是(   )

A. (-∞,0) B. C. (0,1) D. (0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,交于點,,.

(Ⅰ)在線段上找一點,使得平面,并證明你的結(jié)論;

(Ⅱ)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,底面是正形,的中點.

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案