【題目】平面直角坐標(biāo)系中,已知橢圓的離心率為,左、右焦點分別是,以為圓心以3為半徑的圓與以為圓心以1為半徑的圓相交,且交點在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓,為橢圓上任意一點,過點的直線交橢圓于兩點,射線交橢圓于點.
(i)求的值;
(ⅱ)求面積的最大值.
【答案】(Ⅰ);(Ⅱ)(i)2;(ⅱ).
【解析】
試題(Ⅰ)根據(jù)橢圓的定義與幾何性質(zhì)列方程組確定的值,從而得到橢圓的方程;(Ⅱ)(i)設(shè),,由題意知,然后利用這兩點分別在兩上橢圓上確定的值; (ⅱ)設(shè),利用方程組結(jié)合韋達(dá)定理求出弦長,選將的面積表示成關(guān)于的表達(dá)式,然后,令,利用一元二次方程根的判別式確定的范圍,從而求出的面積的最大值,并結(jié)合(i)的結(jié)果求出面積的最大值.
試題解析:(Ⅰ)由題意知,則,又可得,
所以橢圓C的標(biāo)準(zhǔn)方程為.
(Ⅱ)由(Ⅰ)知橢圓E的方程為,
(i)設(shè),,由題意知因為,
又,即,所以,即.
(ⅱ)設(shè)
將代入橢圓E的方程,
可得
由,可得①
則有
所以
因為直線與軸交點的坐標(biāo)為
所以的面積
令,將代入橢圓C的方程可得
由,可得②
由①②可知
因此,故
當(dāng)且僅當(dāng),即時取得最大值
由(i)知,面積為,所以面積的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空間四邊形ABCD的對棱AD,BC成60°的角,且AD=a,BC=b,平行于AD與BC的截面分別交AB,AC,CD,BD于E、F、G、H,則截面EFGH面積的最大值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱柱的底面是正三角形,側(cè)面為菱形,且,平面平面,、分別是、的中點.
(1)求證:平面;
(2)求證:;
(3)求與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a是實數(shù),函數(shù).
(1)若,求a的值及曲線在點處的切線方程;
(2)討論函數(shù)在區(qū)間上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐(如圖一)的平面展開圖(如圖二)中,四邊形為邊長等于的正方形,和均為正三角形,在三棱錐中:
(I)證明:平面平面;
(Ⅱ)若點在棱上運動,當(dāng)直線與平面所成的角最大時,求二面角的余弦值.
圖一
圖二
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)討論的單調(diào)性;
(2)若函數(shù) 在區(qū)間 內(nèi)恰有兩個零點,求 的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓 (a>b>0)的左焦點為F,上頂點為B. 已知橢圓的離心率為,點A的坐標(biāo)為,且.
(I)求橢圓的方程;
(II)設(shè)直線l: 與橢圓在第一象限的交點為P,且l與直線AB交于點Q. 若 (O為原點) ,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為擔(dān)任班主任的教師辦理手機(jī)語音月卡套餐,為了解通話時長,采用隨機(jī)抽樣的方法,得到該校100位班主任每人的月平均通話時長(單位:分鐘)的數(shù)據(jù),其頻率分布直方圖如圖所示,將頻率視為概率.
(1)求圖中的值;
(2)估計該校擔(dān)任班主任的教師月平均通話時長的中位數(shù);
(3)在,這兩組中采用分層抽樣的方法抽取6人,再從這6人中隨機(jī)抽取2人,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在實數(shù)使得則稱是區(qū)間的一內(nèi)點.
(1)求證:的充要條件是存在使得是區(qū)間的一內(nèi)點;
(2)若實數(shù)滿足:求證:存在,使得是區(qū)間的一內(nèi)點;
(3)給定實數(shù),若對于任意區(qū)間,是區(qū)間的一內(nèi)點,是區(qū)間的一內(nèi)點,且不等式和不等式對于任意都恒成立,求證:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com