【題目】如圖,已知平面平面為等邊三角形,為的中點(diǎn).
(1)求證:平面平面;
(2)求直線和平面所成角的正弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)取的中點(diǎn),連接,根據(jù)條件可證四邊形為平行四邊形,則,再利用線面垂直的判定定理證明平面,最后根據(jù)面面垂直的判定定理證明結(jié)論即可;
(2)在平面內(nèi),過點(diǎn)作于點(diǎn),連接,利用線面角的定義找到直線與平面所成角,再通過解三角形得到和即可求出結(jié)果.
(1)證明:取的中點(diǎn),連接.
∵為的中點(diǎn),∴且.
∵平面平面,
∴,∴.
又,∴,
∴四邊形為平行四邊形,則.
∵為等邊三角形,為的中點(diǎn),∴.
∵平面,平面,∴.
又,故平面.
∵,∴平面.
∵平面,
∴平面平面.
(2)在平面內(nèi),過點(diǎn)作于點(diǎn),連接.
∵平面平面,平面平面,∴平面,
∴為和平面所成的角,
設(shè),則,,
中,,
∴直線和平面所成角的正弦值為.
【點(diǎn)晴】
本題考查面面垂直的證明、空間直線和平面的位置關(guān)系以及空間角的計(jì)算,考查考生的推理論證能力以及運(yùn)算求解能力,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的右焦點(diǎn)F為拋物線的焦點(diǎn),點(diǎn)M為和在第一象限的交點(diǎn),且.
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)若,過焦點(diǎn)F的直線l與相交于A,B兩點(diǎn),已知,求取得最大值時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知分別是橢圓:()的左右焦點(diǎn),點(diǎn)是橢圓上一點(diǎn),且.若橢圓的內(nèi)接四邊形的邊的延長(zhǎng)線交于橢圓外一點(diǎn),且點(diǎn)的橫坐標(biāo)為1,記直線的斜率分別為,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(其中t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系并取相同的單位長(zhǎng)度,曲線C2的極坐標(biāo)方程為.
(1)把曲線C1的方程化為普通方程,C2的方程化為直角坐標(biāo)方程;
(2)若曲線C1,C2相交于A,B兩點(diǎn),AB的中點(diǎn)為P,過點(diǎn)P做曲線C2的垂線交曲線C1于E,F兩點(diǎn),求|PE||PF|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在長(zhǎng)方體ABCD﹣A1B1C1D1中,AA1=2AB=2AD=4,過AA1作平面α使BD⊥α,且平面α∩平面A1B1C1D1=l,M∈l.下面給出了四個(gè)命題:這四個(gè)命題中,真命題的個(gè)數(shù)為( )
①l∥AC;
②BM⊥AC;
③l和AD1所成的角為60°;
④線段BM長(zhǎng)度的最小值為.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某小學(xué)的期末考試中抽取部分學(xué)生的數(shù)學(xué)成績(jī),由抽查結(jié)果得到如圖的頻率分布直方圖,分?jǐn)?shù)落在區(qū)間,,內(nèi)的頻率之比為.
(1)求這些學(xué)生的分?jǐn)?shù)落在區(qū)間內(nèi)的頻率;
(2)(。┤舨捎梅謱映闃拥姆椒◤姆?jǐn)?shù)落在區(qū)間,內(nèi)抽取4人,求從分?jǐn)?shù)落在區(qū)間,內(nèi)各抽取的人數(shù);
(ⅱ)從上述抽取的4人中再隨機(jī)抽取2人,求這2人全部來自于區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司準(zhǔn)備將1000萬元資金投人到市環(huán)保工程建設(shè)中,現(xiàn)有甲,乙兩個(gè)建設(shè)項(xiàng)目選擇,若投資甲項(xiàng)目一年后可獲得的利潤(rùn)(萬元)的概率分布列如表所示:
110 | 120 | 170 | |
0.4 |
且的期望;若投資乙項(xiàng)目一年后可獲得的利潤(rùn)(萬元)與該項(xiàng)目建設(shè)材料的成本有關(guān),在生產(chǎn)的過程中,公司將根據(jù)成本情況決定是否在第二和第三季度進(jìn)行產(chǎn)品的價(jià)格調(diào)整,兩次調(diào)整相互獨(dú)立且調(diào)整的概率分別為和.若乙項(xiàng)目產(chǎn)品價(jià)格一年內(nèi)調(diào)整次數(shù)(次數(shù))與的關(guān)系如表所示:
0 | 1 | 2 | |
41.2 | 117.6 | 204.0 |
(1)求,的值;
(2)求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l過點(diǎn)且傾斜角為.以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為,l與C交于M,N兩點(diǎn).
(1)求C的直角坐標(biāo)方程和的取值范圍;
(2)求MN中點(diǎn)H的軌跡的參數(shù)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com