15.設(shè)集合M={α|α=k•90°-36°,k∈Z},N={α|-180°<α<180°},則M∩N=( 。
A.{-36°,54°}B.{-126°,144°}
C.{-36°,54°,-126°,144°}D.{54°,-126°}

分析 分別取k=0,1,2,-1,得到M內(nèi)α的值,與N取交集得答案.

解答 解:∵M(jìn)={α|α=k•90°-36°},
當(dāng)k=0時(shí)α=-36°,k=1時(shí)α=54°,k=2時(shí)α=144°,k=-1時(shí)α=-126°,
又N={α|-180°<α<180°},
∴M∩N={-36°,54°,144°,-126°}.
故選:C

點(diǎn)評(píng) 本題考查了交集及其運(yùn)算,考查了軸線角,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知x,y滿足$\left\{\begin{array}{l}{x-1≤0}\\{y-2≤0}\\{2x+y-2>0}\end{array}\right.$若$\overrightarrow{m}$=(x+1,y)則$\sqrt{{\overrightarrow{m}}^{2}}$的取值范圍為( 。
A.(15,2)B.($\frac{29}{2}$,2$\sqrt{2}$)C.(17,2$\sqrt{2}$)D.($\frac{4\sqrt{5}}{5}$,2$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知命題p:lg(x2-2x-2)≥0;命題q:0<x<4.若p且q為假,p或q為真,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=2,an+1=Sn+2(n≥1,n∈N*),數(shù)列{bn}滿足bn=$\frac{2n-1}{{a}_{n}}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)若數(shù)列{cn}滿足cn=$\frac{{a}_{n}}{({a}_{n}-1)^{2}}$,且{cn}的前n項(xiàng)和為Kn,求證:Kn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.?dāng)?shù)列{an}中,若${a_1}=1,{a_{n+1}}=\frac{n}{n+1}{a_n}$,則an=$\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=mln(x+1),g(x)=$\frac{x}{x+1}$(x>-1).
(Ⅰ)討論函數(shù)F(x)=f(x)-g(x)在(-1,+∞)上的單調(diào)性;
(Ⅱ)若y=f(x)與y=g(x)的圖象有且僅有一條公切線,試求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.圓(x+1)2+y2=1的圓心是拋物線y2=px(p<0)的焦點(diǎn),則p=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)拋物線C:y2=3x的焦點(diǎn)為F,點(diǎn)A為C上一點(diǎn),若|FA|=3,則直線FA的傾斜角為(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{4}$或$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)M(x0,2$\sqrt{2}$)(x0>$\frac{p}{2}$)是拋物線C上一點(diǎn),圓M與線段MF相交于點(diǎn)A,且被直線x=$\frac{p}{2}$截得的弦長為$\sqrt{3}$|MA|,若$\frac{|MA|}{|AF|}$=2,則|AF|等于(  )
A.$\frac{3}{2}$B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案