如圖正方體ABCD-A1B1C1D1中,M為BC中點,則直線D1M與平面ABCD所成角的正切值為 ________,異面直線DC與D1M所成角的余弦值為 ________.

    
分析:AD的中點為O,連接DM,CM,說明∠D1MD直線D1M與平面ABCD所成角,∠D1MO異面直線DC與D1M所成角,分別求解即可.
解答:解:AD的中點為O,連接DM,CM,因為D1D⊥平面ABCD,
∴∠D1MD直線D1M與平面ABCD所成角,
設(shè)棱長為2,MD=,所以直線D1M與平面ABCD所成角的正切值為:
因為MO∥CD,∴∠D1MO異面直線DC與D1M所成角,
MD1=3
∴cos∠D1MO=
故答案為:;
點評:本題考查空間中直線與平面之間的位置關(guān)系,考查計算能力,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖正方體ABCD-A1B1C1D1中,M為BC中點,則直線D1M與平面ABCD所成角的正切值為
 
,異面直線DC與D1M所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖正方體ABCD-A1B1C1D1的棱長為1,點M是棱AA1的中點,點O是BD1的中點,求證:OM是異面直線AA1,BD1的公垂線,并求OM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖正方體ABCD-A1B1C1D1的棱長為2,則點B1到直線AC的距離是
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)如圖正方體ABCD-A1B1C1D1,在它的12條棱及12條面的對角線所在的直線中,選取若干條直線確定平面,在所有的這些平面中:
(1)、過B1C且與BD平行的平面有且只有一個;
(2)、過B1C且與BD垂直的平面有且只有一個;
(3)、存在平面α,過B1C與直線BD所成的角等于30.
其中是真命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲.如圖1,平面VAD⊥平面ABCD,△VAD是等邊三角形,ABCD是矩形,AB:AD=
2
:1,F(xiàn)是AB的中點.
(1)求VC與平面ABCD所成的角;
(2)求二面角V-FC-B的度數(shù);
(3)當(dāng)V到平面ABCD的距離是3時,求B到平面VFC的距離.
乙、如圖正方體ABCD-A1B1C1D1中,E、F、G分別是B1B、AB、BC的中點.
(1)證明:D1F⊥EG;
(2)證明:D1F⊥平面AEG;
(3)求cos<
AE
,
D1B

注意:考生在(19甲)、(19乙)兩題中選一題作答,如果兩題都答,只以(19甲)計分.

查看答案和解析>>

同步練習(xí)冊答案