下列敘述正確的是( 。
A、第一象限的角是銳角
B、銳角是第一象限的角
C、三角形的內(nèi)角是第一或第二象限的角
D、0°是第一象限的角
考點:象限角、軸線角
專題:計算題
分析:利用象限角、軸線角的定義,通過給變量取特殊值,舉反例來可以說明某個命題不正確,可排除部分選項.
解答: 解:第一象限角不一定是銳角,例如420°是第一象限角,因此A不正確;
因為銳角是大于零度且小于90度的角,故終邊位于第一象限內(nèi),因此B正確;
當(dāng)三角形的內(nèi)角是直角時,終邊落在y軸的非負(fù)半軸上,因此C不正確;
0°的終邊落在x軸的非負(fù)半軸上,不是第一象限的角,因此D不正確;
故選:B.
點評:本題考查象限角、軸線角的定義,通過給變量取特殊值,舉反例說明某個命題不正確,是一種簡單有效的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
b
的夾角為60°;
②若
a
b
>0,則
a
b
的夾角為銳角;
③△ABC中,有一點O滿足
OA
+
OB
+
OC
=0,則O為△ABC的重心;
④對非零向量
a
,
b
,若|
a
+
b
|=|
a
|-|
b
|,則存在實數(shù)λ,使得
b
a
成立.
以上命題正確的個數(shù)是(  )
A、4個B、3個C、2個D、1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(-1+x)=f(-1-x),當(dāng)0≤x≤1時,f(x)=1-x2,若直線y=-x+a與曲線y=f(x)恰有2個交點,則實數(shù)a的所有可能取值構(gòu)成的集合為( 。
A、{a|a=2k+
3
4
或2k+
5
4
,k∈Z}
B、{a|a=2k-
1
4
或2k+
3
4
,k∈Z}
C、{a|a=2k+1或2k+
5
4
,k∈Z}
D、{a|a=2k+1,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos39°cos(-9°)-sin39°sin(-9°)等于( 。
A、
1
2
B、
3
2
C、-
1
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=10x-5,則f′(1)等于( 。
A、0B、5C、10D、15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知|AB|=|BC|=|AC|=2,則向量
AB
BC
的數(shù)量積
AB
BC
=( 。
A、2
3
B、-2
3
C、2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:y=2x-1與圓C:x2+y2=3的位置關(guān)系是(  )
A、相離B、相切
C、直線過圓C的圓心D、相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列冪函數(shù)中,過點(0,0)和(-1,1),并且是偶函數(shù)的是( 。
A、y=-x
B、y=x-2
C、y=x 
1
2
D、y=x 
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log2(1-x),-1≤x<k
x3-3x+1,k≤x≤
3
,若函教f(x)的值域是[-1,1],則實數(shù)k的取值范圍是(  )
A、[-1,0]
B、[0,
1
2
]
C、[
1
2
,1]
D、[1,
3
]

查看答案和解析>>

同步練習(xí)冊答案