精英家教網 > 高中數學 > 題目詳情

【題目】已知等差數列{an}的公差為2,前n項和為Sn , 且S1 , S2 , S4成等比數列.
(1)求數列{an}的通項公式;
(2)令bn=(﹣1)n1 ,求數列{bn}的前n項和Tn

【答案】
(1)解:∵等差數列{an}的公差為2,前n項和為Sn,

∴Sn= =n2﹣n+na1,

∵S1,S2,S4成等比數列,

,化為 ,解得a1=1.

∴an=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.


(2)解:由(1)可得bn=(﹣1)n1 = =

∴Tn= + +…+

當n為偶數時,Tn= + +…+ =1﹣ =

當n為奇數時,Tn= + +…﹣ + =1+ =

∴Tn=


【解析】(1)利用等差數列與等比數列的通項公式及其前n項和公式即可得出;(2)由(1)可得bn= .對n分類討論“裂項求和”即可得出.
【考點精析】掌握數列的前n項和和數列的通項公式是解答本題的根本,需要知道數列{an}的前n項和sn與通項an的關系;如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下列關于函數的判斷正確的是(  )

的解集是;

極小值,是極大值;

沒有最小值,也沒有最大值.

A. ①③ B. ①②③ C. D. ①②

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,四面體ABCD及其三視圖(如圖2所示),過棱AB的中點E作平行于AD,BC的平面分別交四面體的棱BD,DC,CA于點F,G,H.

(1)證明:四邊形EFGH是矩形;
(2)求直線AB與平面EFGH夾角θ的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了研究某藥品的療效,選取若干名志愿者進行臨床試驗.所有志愿者的舒張壓數據(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組,第二組,…,第五組.如圖是根據試驗數據制成的頻率分布直方圖.已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數為(

A.6
B.8
C.12
D.18

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】乒乓球臺面被網分成甲、乙兩部分,如圖,甲上有兩個不相交的區(qū)域A,B,乙被劃分為兩個不相交的區(qū)域C,D,某次測試要求隊員接到落點在甲上的來球后向乙回球,規(guī)定:回球一次,落點在C上記3分,在D上記1分,其它情況記0分.對落點在A上的來球,小明回球的落點在C上的概率為 ,在D上的概率為 ;對落點在B上的來球,小明回球的落點在C上的概率為 ,在D上的概率為 .假設共有兩次來球且落在A,B上各一次,小明的兩次回球互不影響,求:

(1)小明兩次回球的落點中恰有一次的落點在乙上的概率;
(2)兩次回球結束后,小明得分之和ξ的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為隨機變量,從棱長為1的正方體的12條棱中任取兩條,當兩條棱相交時,;當兩條棱平行時,的值為兩條棱之間的距離;當兩條棱異面時,

(1)求概率

(2)求的分布列,并求其數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,, 平面,Q是AD的中點,M是棱PC上的點,,,.

(1)求證:平面

(2)若平面QMB與平面PDC所成的銳二面角的大小為,求的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙、丙三名大學生參加學校組織的“國學達人”挑戰(zhàn)賽, 每人均有兩輪答題機會,當且僅當第一輪不過關時進行第二輪答題.根據平時經驗,甲、乙、丙三名大學生每輪過關的概率分別為,且三名大學生每輪過關與否互不影響.

(1)求甲、乙、丙三名大學生都不過關的概率;

(2)記為甲、乙、丙三名大學生中過關的人數,求隨機變量的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數有兩個極值點,其中,且,則方程的實根個數為

查看答案和解析>>

同步練習冊答案