已知四棱錐P-ABCD的底面是等腰梯形,AD=BC=1,DC=2AB=2PD,∠ADC=60°,PD⊥底面ABCD,試建立空間直角坐標(biāo)系,并表示五個(gè)點(diǎn)的坐標(biāo).
考點(diǎn):空間中的點(diǎn)的坐標(biāo)
專(zhuān)題:空間位置關(guān)系與距離
分析:以D為原點(diǎn)建立空間直角坐標(biāo)系,通過(guò)數(shù)據(jù)關(guān)系求出各個(gè)點(diǎn)的坐標(biāo)即可.
解答: 解:在平面ABCD中,過(guò)D作DC的垂線,以D為原點(diǎn),DC為y軸,DP為z軸,建立如圖所示的空間直角坐標(biāo)系,
則由題意知,D(0,0,0),A(
3
2
1
2
,0),B(
3
2
3
2
,0),
C(0,2,0),P(0,0,1).
點(diǎn)評(píng):本題考查空間直角坐標(biāo)系的應(yīng)用,空間點(diǎn)的坐標(biāo)的求法,考查基本知識(shí)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=
2
3
,an+1=
2an
an+1
,n=1,2,3,….令bn=
1
an
-1.
(Ⅰ)證明:數(shù)列{bn}是等比數(shù)列,并求出數(shù)列{bn}的通項(xiàng)公式bn;
(Ⅱ)令cn=2n•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上三個(gè)向量
a
,
b
,
c
,其中
a
=(1,2).
(1)若|
c
|=2
5
,且
a
c
,求
c
的坐標(biāo);
(2)若|
b
|=
5
2
,且(
a
+2
b
)⊥(2
a
-
b
),求
a
b
夾角θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式|
1
3
x
|>7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在空間四邊形ABCP中,PA⊥PC,PB⊥BC,AC⊥BC,PA、PB與平面ABC所成角分別是30°、45°
(1)直線PC與AB能否垂直?證明你的結(jié)論;
(2)若點(diǎn)P到平面ABC的距離為h,求點(diǎn)P到直線AB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3ax2+2bx-a2(a>0),設(shè)x1,x2(x1≠x2)為函數(shù)f(x)的兩個(gè)零點(diǎn).
(1)若x1=-1,x2=2,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若|x1|+|x2|=2,求實(shí)數(shù)b的最大值;
(3)若x1<x<x2,且x2=a,g(x)=f(x)-a(x-x1),求證:
|g(x)|
a
-
3
4
a2-a≤
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x>0且2x2+3y2=30,求x
2+y2
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的公比q=2,且2a4,a6,48成等差數(shù)列,則{an}的前8項(xiàng)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足約束條件
x+y≥3
y≤3
x≤3
,則z=5-x2-y2的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案