精英家教網(wǎng)已知O為坐標原點,F(xiàn)為橢圓C:x2+
y2
2
=1
在y軸正半軸上的焦點,過F且斜率為-
2
的直線l與C交于A、B兩點,點P滿足
OA
+
OB
+
OP
=
0

(Ⅰ)證明:點P在C上;
(Ⅱ)設(shè)點P關(guān)于點O的對稱點為Q,證明:A、P、B、Q四點在同一圓上.
分析:(1)要證明點P在C上,即證明P點的坐標滿足橢圓C的方程x2+
y2
2
=1
,根據(jù)已知中過F且斜率為-
2
的直線l與C交于A、B兩點,點P滿足
OA
+
OB
+
OP
=
0
,我們求出點P的坐標,代入驗證即可.
(2)若A、P、B、Q四點在同一圓上,則我們可以先求出任意三點確定的圓的方程,然后將第四點坐標代入驗證即可.
解答:證明:(Ⅰ)設(shè)A(x1,y1),B(x2,y2
橢圓C:x2+
y2
2
=1
  ①,則直線AB的方程為:y=-
2
x+1  ②
聯(lián)立方程可得4x2-2
2
x-1=0,
則x1+x2=
2
2
,x1×x2=-
1
4

則y1+y2=-
2
(x1+x2)+2=1
設(shè)P(p1,p2),
則有:
0A
=(x1,y1),
0B
=(x2,y2),
0P
=(p1,p2);
0A
+
0B
=(x1+x2,y1+y2)=(
2
2
,1);
0P
=(p1,p2)=-(
0A
+
0B
)=(-
2
2
,-1)
∴p的坐標為(-
2
2
,-1)代入①方程成立,所以點P在C上.

(Ⅱ)設(shè)點P關(guān)于點O的對稱點為Q,證明:A、P、B、Q四點在同一圓上.
設(shè)線段AB的中點坐標為(
x1+x2
2
,
y1y2
2
),即(
2
4
,
1
2
),
則過線段AB的中點且垂直于AB的直線方程為:y-
1
2
=
2
2
(x-
2
4
),即y=
2
2
x+
1
4
;③
∵P關(guān)于點O的對稱點為Q,故0(0.0)為線段PQ的中點,
則過線段PQ的中點且垂直于PQ的直線方程為:y=-
2
2
x④;
③④聯(lián)立方程組,解之得:x=-
2
8
,y=
1
8

③④的交點就是圓心O1(-
2
8
,
1
8
),
r2=|O1P|2=(-
2
2
-(-
2
8
))2+(-1-
1
8
2=
3
11
8

故過P Q兩點圓的方程為:(x+
2
8
2+(y-
1
8
2=
3
11
8
…⑤,
把y=-
2
x+1 …②代入⑤,
有x1+x2=
2
2
,y1+y2=1
∴A,B也是在圓⑤上的.
∴A、P、B、Q四點在同一圓上.
點評:本題考查的知識點是直線與圓錐曲線的關(guān)系,向量在幾何中的應(yīng)用,其中判斷點與曲線關(guān)系時,所使用的坐標代入驗證法是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標原點,F(xiàn)為拋物線y2=4x的焦點,A是拋物線上一點,若
OA
AF
=-4,則點A的坐標是
(1,2)或(1,-2)
(1,2)或(1,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知O為坐標原點,F(xiàn)為拋物線y2=4x的焦點,A是拋物線上一點,若
OA
AF
=-4,則點A的坐標是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《2.3 拋物線》2013年同步練習(xí)2(解析版) 題型:填空題

已知O為坐標原點,F(xiàn)為拋物線y2=4x的焦點,A是拋物線上一點,若=-4,則點A的坐標是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考真題 題型:解答題

已知O為坐標原點,F(xiàn)為橢圓C:在y軸正半軸上的焦點,過F且斜率為的直線l與C交于A、B兩點,點P滿足。
(1)證明:點P在C上;
(Ⅱ)設(shè)點P關(guān)于點O的對稱點為Q,證明:A、P、B、Q四點在同一圓上。

查看答案和解析>>

同步練習(xí)冊答案