橢圓
x2
a2
+
y2
b2
=1
(a>b>0),點A為其上任意一點,左右焦點為F1,F(xiàn)2,若|AF1|,|F1F2|,|AF2|成等差數(shù)列,則此橢圓的離心率為______.
橢圓
x2
a2
+
y2
b2
=1
(a>b>0),點A為其上任意一點,
左右焦點為F1,F(xiàn)2,|AF1|,|F1F2|,|AF2|成等差數(shù)列,
∴2|F1F2|=|AF1|+|AF2|,
∴4c=2a,即a=2c,
∴e=
c
a
=
1
2

故答案為:
1
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓
x2
3
+
y2
4
=1
的焦點為F1、F2,P為橢圓上一點,且|PF1|=3|PF2|,則|PF1|的值為( �。�
A.3B.1C.
3
3
2
D.
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從橢圓短軸的一個端點看長軸的兩個端點的視角為120°,那么此橢圓的離心率為( �。�
A.
1
2
B.
2
2
C.
3
3
D.
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1、F2為橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的焦點;M為橢圓上一點,MF1垂直于x軸,且∠F1MF2=60°,則橢圓的離心率為( �。�
A.
1
2
B.
2
2
C.
3
3
D.
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F,右頂點為A,點B在橢圓上,且BF⊥x軸,直線AB交y軸于點P.若
AP
=2
PB
,
|AP|=2|PB|,則橢圓的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓
x2
25
+
y2
9
=1
上一點A到焦點F的距離為2,B為AF的中點,O為坐標(biāo)原點,則|OB|的值為( �。�
A.8B.4C.2D.
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓
x2
a2
+
y2
b2
=1
(a>0,b>0)的兩焦點關(guān)于直線y=x的對稱點均在橢圓內(nèi)部,則橢圓的離心率e的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1,F(xiàn)2為橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的兩個焦點,過F2作橢圓的弦AB,若△AF1B的周長為16,橢圓的離心率e=
3
2
,則橢圓的方程為( �。�
A.
x2
4
+
y2
3
=1
B.
x2
16
+
y2
3
=1
C.
x2
16
+
y2
4
=1
D.
x2
16
+
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)的左、右焦點,橢圓上一點M滿足∠MF1O=
π
3
,N為MF1的中點且ON⊥MF1,則橢圓的離心率為( �。�
A.
3
-1
B.
3
2
C.2-
2
D.
2
-1

查看答案和解析>>

同步練習(xí)冊答案
閸忥拷 闂傦拷