已知|z-2|2+|z+2|2=16,則|z-1|的最大值是
 
考點:復(fù)數(shù)求模,復(fù)數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復(fù)數(shù)
分析:z=a+bi,化簡得出a2+b2=4,根據(jù)幾何意義得出;Z點在以(0,0)為圓心,以2為半徑的圓上,運用圖形求解即可.
解答: 解:z=a+bi,
∵|z-2|2+|z+2|2=16,
∴(a-2)2+b2+(a+2)2+b2=16,
a2+b2=4,
根據(jù)幾何意義得出;Z點在以(0,0)為圓心,以2為半徑的圓上,

∴|z-1|的幾何意義是,圓上的點到(1,0)的距離,
∴|z-1|的最大值為3,
故答案為:3
點評:本題考查了圓與點的位置關(guān)系,復(fù)數(shù)模的幾何意義,屬于中檔題,關(guān)鍵是畫出圖形,運用圖形判斷最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)a,b,c滿足a≤b+c≤3a,b2≤a(a+c)≤3b2.求
c-b
a
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

分別過點A(1,3)和點B(2,4)的直線l1和l2互相平行且有最大距離,則l1的方程是( 。
A、x-y-4=0
B、x+y-4=0
C、x=1
D、y=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos2
π
5
+cos2
10
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用秦九韶算法計算多項式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4時的值時,V3的值為( 。
A、-845B、220
C、-57D、34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一段半徑為R,圓心角為90°的扇形圓木,欲按圖中陰影部分據(jù)成橫截面為四邊形OABC的木材.試問,怎樣據(jù)才能使截面面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)方程2x+x+2=0和方程log2x+x+2=0的根分別為p和q,設(shè)函數(shù)f(x)=(x+p)(x+q)+2,則( 。
A、f(2)=f(0)<f(3)
B、f(0)<f(2)<f(3)
C、f(3)<f(0)=f(2)
D、f(0)<f(3)<f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=
|x2-1|
x-1
的圖象與y=k恰有兩個交點,求k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖展示了一個由區(qū)間(0,1)到實數(shù)集R的映射過程:區(qū)間(0,1)中的實數(shù)m對應(yīng)數(shù)上的點m,如圖1;將線段AB圍成一個圓,使兩端點A,B恰好重合,如圖2;再將這個圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點A的坐標(biāo)為(0,1),如圖3.圖3中直線AM與x軸交于點N(n,0),則m的象就是n,記作f(m)=n.

下列說法中正確命題的序號是
 
.(填出所有正確命題的序號)
①方程f(x)=0的解是x=
1
2
;       
f(
1
4
)=1
;      
③f(x)是奇函數(shù);                      
④f(x)在定義域上單調(diào)遞增;       
⑤f(x)的圖象關(guān)于點(
1
2
,0)
對稱.

查看答案和解析>>

同步練習(xí)冊答案