【題目】設(shè)函數(shù)f(x)=lnx+ ,m∈R,若對(duì)任意b>a>0, <1恒成立,則m的取值范圍為 .
【答案】[ ,+∞)
【解析】(Ⅲ)對(duì)任意b>a>0, <1恒成立,
等價(jià)于f(b)﹣b<f(a)﹣a恒成立;
設(shè)h(x)=f(x)﹣x=lnx+ ﹣x(x>0),
則h(b)<h(a).
∴h(x)在(0,+∞)上單調(diào)遞減;
∵h(yuǎn)′(x)= ﹣ ﹣1≤0在(0,+∞)上恒成立,
∴m≥﹣x2+x=﹣(x﹣ )2+ (x>0),
∴m≥ ;
對(duì)于m= ,h′(x)=0僅在x= 時(shí)成立;
∴m的取值范圍是[ ,+∞).
【考點(diǎn)精析】利用函數(shù)的最大(小)值與導(dǎo)數(shù)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)閇﹣1,5],部分對(duì)應(yīng)值如表,
x | ﹣1 | 0 | 4 |
f(x) | 1 | 2 | 2 |
f(x)的導(dǎo)函數(shù)y=f′(x)的圖象(該圖象關(guān)于(2,0)中心對(duì)稱) 如圖所示.
下列關(guān)于f(x)的命題:
①函數(shù)f(x)的極大值點(diǎn)為 0與4;
②函數(shù)f(x)在[0,2]上是減函數(shù);
③函數(shù)y=f(x)﹣a零點(diǎn)的個(gè)數(shù)可能為0、1、2、3、4個(gè);
④如果當(dāng)時(shí)x∈[﹣1,t],f(x)的最大值是2,那么t的最大值為5;.
⑤函數(shù)f(x)的圖象在a=1是上凸的
其中一定正確命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|x﹣3|+|x﹣4|. (Ⅰ)解不等式f(x)≤2;
(Ⅱ)若對(duì)任意實(shí)數(shù)x∈[5,9],f(x)≤ax﹣1恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列 Sn為其前n項(xiàng)和.計(jì)算得 觀察上述結(jié)果,推測出計(jì)算Sn的公式,并用數(shù)學(xué)歸納法加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,集合A= ,B={y|y=log2x,4<x<16},
(1)求圖中陰影部分表示的集合C;
(2)若非空集合D={x|4﹣a<x<a},且D(A∪B),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[ ]表示不超過 的最大整數(shù).若 S1=[ ]+[ ]+[ ]=3,
S2=[ ]+[ ]+[ ]+[ ]+[ ]=10,
S3=[ ]+[ ]+[ ]+[ ]+[ ]+[ ]+[ ]=21,
…,
則Sn=( )
A.n(n+2)
B.n(n+3)
C.(n+1)2﹣1
D.n(2n+1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=3sin(ωx+) 的部分圖象如圖所示,A,B兩點(diǎn)之間的距離為10,且f(2)=0,若將函數(shù)f(x)的圖象向右平移t(t>0)的單位長度后所得函數(shù)圖象關(guān)于y軸對(duì)稱,則t的最小值為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+3在(﹣∞,1]上是減函數(shù),當(dāng)x∈[a+1,1]時(shí),f(x)的最大值與最小值之差為g(a),則g(a)的最小值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com