如圖,在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),PA=2AB=2。
(1)求證:CE∥平面PAB;
(2)求四面體PACE的體積.
(1)詳見(jiàn)解析;(2)
解析試題分析:(1)要證CE∥平面PAB,可以轉(zhuǎn)換為證明,而要證明又可轉(zhuǎn)化為與(另外也可以轉(zhuǎn)化為線線平行) ;(2)要求四面體PACE的體積,可轉(zhuǎn)換頂點(diǎn)求以E為頂點(diǎn)PAC為底面的三棱錐的體積.
試題解析:(1)法一:取AD得中點(diǎn)M,連接EM,CM.
則EM//PA 1分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c2/e/zygdo1.png" style="vertical-align:middle;" />
所以, 2分
在中,
所以,
而,所以,MC//AB. 3分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f9/c/1dqfh3.png" style="vertical-align:middle;" />
所以, 4分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9f/0/qsu292.png" style="vertical-align:middle;" />
所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d2/3/kqr5k1.png" style="vertical-align:middle;" /> 6分
法二: 延長(zhǎng)DC,AB,交于N點(diǎn),連接PN. 1分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2f/9/gpt4i.png" style="vertical-align:middle;" />
所以,C為ND的中點(diǎn). 3分
因?yàn)镋為PD的中點(diǎn),所以,EC//PN
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8b/b/khiov.png" style="vertical-align:middle;" />
6分
(2)法一:由已知條件有;AC=2AB=2,AD=2AC=4,CD= 7分
因?yàn)椋?img src="http://thumb.zyjl.cn/pic5/tikupic/11/0/1cjka4.png" style="vertical-align:middle;" />,所以, 8分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a3/a/tockg1.png" style="vertical-align:middle;" />
所以, 10分
因?yàn)镋是PD的中點(diǎn)
所以點(diǎn)E平面PAC的距離 ,
所以,四面體PACE的體積 12分
法二:由已知條件有;AC=2AB=2,AD=2AC=4,CD=
因?yàn)椋?img src="http://thumb.zyjl.cn/pic5/tikupic/11/0/1cjka4.png" style="vertical-align:middle;" />
所以, 10分
因?yàn)镋是PD的中點(diǎn)
所以,四面體PACE的體積 12分
考點(diǎn):(1)空間位置關(guān)系的證明;(2)三棱錐求體積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2013•重慶)如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,,BC=CD=2,.
(1)求證:BD⊥平面PAC;
(2)若側(cè)棱PC上的點(diǎn)F滿(mǎn)足PF=7FC,求三棱錐P﹣BDF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在五面體中,四邊形是邊長(zhǎng)為的正方形,平面,,,,,是的中點(diǎn).
(1)求證:平面;
(2)求證:平面;
(3)求五面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,ABEDFC為多面體,平面ABED與平面ACFD垂直,點(diǎn)O在線段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.
(1)證明直線BC∥EF;
(2)求棱錐FOBED的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在如圖所示的多面體中,已知正三棱柱ABCA1B1C1的所有棱長(zhǎng)均為2,四邊形ABDC是菱形.
(1)求證:平面ADC1⊥平面BCC1B1;
(2)求該多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,點(diǎn)E在線段AD上,且CE∥AB.
(1)求證:CE⊥平面PAD;
(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
一個(gè)幾何體的三視圖如下圖所示,已知正(主)視圖是底邊長(zhǎng)為1的平行四邊形,側(cè)(左)視圖是一個(gè)長(zhǎng)為,寬為1的矩形,俯視圖為兩個(gè)邊長(zhǎng)為1的正方形拼成的矩形.
(1)求該幾何體的體積V;
(2)求該幾何體的表面積S.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com