【題目】在平面直角坐標(biāo)系中,已知圓的方程為,過(guò)點(diǎn)的直線與圓交于兩點(diǎn),

1)若,求直線的方程;

2)若直線軸交于點(diǎn),設(shè),,R,求的值.

【答案】(1)(2)

【解析】

1)設(shè)斜率為,則直線的方程為,利用圓的弦長(zhǎng)公式,列出方程求得的值,即可得到直線的方程;

2)當(dāng)直線的斜率不存在時(shí),根據(jù)向量的運(yùn)算,求得,當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,聯(lián)立方程組,利用根與系數(shù)的關(guān)系,以及向量的運(yùn)算,求得,得到答案.

1)當(dāng)直線的斜率不存在時(shí),,不符合題意;

當(dāng)直線的斜率存在時(shí),設(shè)斜率為,則直線的方程為,

所以圓心到直線的距離,

因?yàn)?/span>,所以,解得

所以直線的方程為 .

2)當(dāng)直線的斜率不存在時(shí),不妨設(shè),,,

因?yàn)?/span>,,所以,,

所以,,所以

當(dāng)直線的斜率存在時(shí),設(shè)斜率為,則直線的方程為:,

因?yàn)橹本軸交于點(diǎn),所以

直線與圓交于點(diǎn),,設(shè),,

得,,所以,;

因?yàn)?/span>,所以,,

所以,

所以

綜上,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)求函數(shù)的極值點(diǎn).

)設(shè)函數(shù),其中,求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) f(x)=|x+2|﹣|x﹣3|﹣a

Ⅰ)當(dāng) a=1 時(shí),求函數(shù) f(x)的最大值;

Ⅱ)若 f(x)≤ 對(duì)任意 xR 恒成立求實(shí)數(shù) a 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】李克強(qiáng)總理在2018年政府工作報(bào)告指出,要加快建設(shè)創(chuàng)新型國(guó)家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢(shì),深入實(shí)施創(chuàng)新驅(qū)動(dòng)發(fā)展戰(zhàn)略,不斷增強(qiáng)經(jīng)濟(jì)創(chuàng)新力和競(jìng)爭(zhēng)力.某手機(jī)生產(chǎn)企業(yè)積極響應(yīng)政府號(hào)召,大力研發(fā)新產(chǎn)品,爭(zhēng)創(chuàng)世界名牌.為了對(duì)研發(fā)的一批最新款手機(jī)進(jìn)行合理定價(jià),將該款手機(jī)按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:

單價(jià)(千元)

銷量(百件)

已知.

1)若變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(jià)(千元)的線性回歸方程;

2)用(1)中所求的線性回歸方程得到與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.

(參考公式:線性回歸方程中的估計(jì)值分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三條直線型公路,在點(diǎn)處交匯,其中的夾角都為,在公路上取一點(diǎn),且km,過(guò)鋪設(shè)一直線型的管道,其中點(diǎn)上,點(diǎn)上(,足夠長(zhǎng)),設(shè)kmkm

1)求出,的關(guān)系式;

2)試確定,的位置,使得公路段與段的長(zhǎng)度之和最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取5所學(xué)校,對(duì)學(xué)生進(jìn)行視力檢查.

(1)求應(yīng)從小學(xué)、中學(xué)中分別抽取的學(xué)校數(shù)目;

(2)若從抽取的5所學(xué)校中抽取2所學(xué)校作進(jìn)一步數(shù)據(jù)

①列出所有可能抽取的結(jié)果;

②求抽取的2所學(xué)校至少有一所中學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有人用三段論進(jìn)行推理:“函數(shù) 的導(dǎo)函數(shù) 的零點(diǎn)即為函數(shù)的極值點(diǎn),函數(shù) 的導(dǎo)函數(shù)的零點(diǎn)為 ,所以 是函數(shù) 的極值點(diǎn) ”,上面的推理錯(cuò)誤的是( )

A. 大前提 B. 小前提 C. 推理形式 D. 以上都是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,點(diǎn)E,F(xiàn)分別是棱D1C1 , B1C1的中點(diǎn),過(guò)E,F(xiàn)作一平面α,使得平面α∥平面AB1D1 , 則平面α截正方體的表面所得平面圖形為(
A.三角形
B.四邊形
C.五邊形
D.六邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若實(shí)數(shù)x,y滿足2x﹣3≤ln(x+y+1)+ln(x﹣y﹣2),則xy=

查看答案和解析>>

同步練習(xí)冊(cè)答案