【題目】如圖1,某小區(qū)中有條長為50,寬為6.5米的道路ABCD,在路的一側(cè)可以停放汽車,已知小型汽車的停車位是一個(gè)2.5米寬,5米長的矩形,GHPQ,這樣該段道路可以劃岀10個(gè)車位,隨著小區(qū)居民汽車擁有量的增加,停車難成為普遍現(xiàn)象.經(jīng)過各方協(xié)商,小區(qū)物業(yè)擬壓縮綠化,拓寬道路,改變車位方向增加停車位,如圖2,改建后的通行寬度保持不變,GAD的距離不變.

(1)綠化被壓縮的寬度BE與停車位的角度∠HPE有關(guān),為停車方便,要求,寫出關(guān)于的函數(shù)表達(dá)式

(2)沿用(1)的條件和記號,實(shí)際施工時(shí),BE=3,問改造后的停車位增加了多少個(gè)?

【答案】1 ,;(25

【解析】

1)由題意知,根據(jù)三角形的邊角關(guān)系,得出關(guān)于的函數(shù)表達(dá)式;(2)根據(jù)(1)可知,根據(jù),解出的值,然后根據(jù)圖2 計(jì)算改造后的停車位的個(gè)數(shù),再計(jì)算增加的個(gè)數(shù).

1)由題意可知,,,

,,,

,

,

,;

2

由(1)可知,

當(dāng)時(shí),,即

,

整理為 ,

,

解得:

, ,

,得,, ,

設(shè)圖2改造后的停車位有個(gè),

,

,

解得:

停車位增加了個(gè),

所以改造后的停車位增加了5個(gè).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過多年的運(yùn)作,雙十一搶購活動(dòng)已經(jīng)演變成為整個(gè)電商行業(yè)的大型集體促銷盛宴.為迎接2014雙十一網(wǎng)購狂歡節(jié),某廠家擬投入適當(dāng)?shù)膹V告費(fèi),對網(wǎng)上所售產(chǎn)品進(jìn)行促銷.經(jīng)調(diào)查測算,該促銷產(chǎn)品在雙十一的銷售量p萬件與促銷費(fèi)用x萬元滿足(其中a為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為

元/件,假定廠家的生產(chǎn)能力完全能滿足市場的銷售需求.

(1)將該產(chǎn)品的利潤y萬元表示為促銷費(fèi)用x萬元的函數(shù);

(2)促銷費(fèi)用投入多少萬元時(shí),廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖一,在直角梯形中,分別為的三等分點(diǎn),, ,,,若沿著折疊使得點(diǎn)重合,如圖二所示,連結(jié).

1)求證:平面平面

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)計(jì)一個(gè)隨機(jī)試驗(yàn),使一個(gè)事件的概率與某個(gè)未知數(shù)有關(guān),然后通過重復(fù)試驗(yàn),以頻率估計(jì)概率,即可求得未知數(shù)的近似解,這種隨機(jī)試驗(yàn)在數(shù)學(xué)上稱為隨機(jī)模擬法,也稱為蒙特卡洛法。比如要計(jì)算一個(gè)正方形內(nèi)部不規(guī)則圖形的面積,就可以利用撒豆子,計(jì)算出落在不規(guī)則圖形內(nèi)部和正方形內(nèi)部的豆子數(shù)比近似等于不規(guī)則圖形面積與正方形面積比,從而近似求出不規(guī)則圖形的面積.

統(tǒng)計(jì)學(xué)上還有一個(gè)非常著名的蒲豐投針實(shí)驗(yàn):平面上間隔的平行線,向平行線間的平面上任意投擲一枚長為的針,通過多次實(shí)驗(yàn)可以近似求出針與任一平行線(以為例)相交(當(dāng)針的中點(diǎn)在平行線外不算相交)的概率.以表示針的中點(diǎn)與最近一條平行線的距離,又以表示所成夾角,如圖甲,易知滿足條件:

由這兩式可以確定平面上的一個(gè)矩形,如圖乙,在圖甲中,當(dāng)滿足___________,之間的關(guān)系)時(shí),針與平行線相交(記為事件).可用從實(shí)驗(yàn)中獲得的頻率去近似,即投針次,其中相交的次數(shù)為,則,歷史上有一個(gè)數(shù)學(xué)家親自做了這實(shí)驗(yàn),他投擲的次數(shù)是5000,相交的次數(shù)為2550次,,,依據(jù)這個(gè)實(shí)驗(yàn)求圓周率的近似值_________.(精確到3位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)設(shè)的極值點(diǎn).求,并求的單調(diào)區(qū)間;

2)證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列滿足:對一切,有,其中是與無關(guān)的常數(shù),稱數(shù)列上有界(有上界),并稱是它的一個(gè)上界,對一切,有,其中是與無關(guān)的常數(shù),稱數(shù)列下有界(有下界),并稱是它的一個(gè)下界.一個(gè)數(shù)列既有上界又有下界,則稱為有界數(shù)列,常值數(shù)列是一個(gè)特殊的有界數(shù)列.設(shè),數(shù)列滿足,.

1)若數(shù)列為常數(shù)列,試求實(shí)數(shù)、滿足的等式關(guān)系,并求出實(shí)數(shù)的取值范圍;

2)下面四個(gè)選項(xiàng),對一切實(shí)數(shù),恒正確的是.(寫出所有正確選項(xiàng),不需要證明其正確,但需要簡單說明一下為什么不選余下幾個(gè))

A. 當(dāng)時(shí), B. 當(dāng)時(shí),

C. 當(dāng)時(shí), D. 當(dāng)時(shí),

3)若,,且數(shù)列是有界數(shù)列,求的值及的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸正半軸且單位長度相同的極坐標(biāo)系中曲線,為參數(shù)).

(Ⅰ)求曲線上的點(diǎn)到曲線距離的最小值;

(Ⅱ)若把上各點(diǎn)的橫坐標(biāo)都擴(kuò)大原來為原來的2倍,縱坐標(biāo)擴(kuò)大原來的倍,得到曲線,設(shè),曲線交于,兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)雙曲線 的左右焦點(diǎn)分別為,過的直線分別交雙曲線左右兩支于點(diǎn)M,N.若以MN為直徑的圓經(jīng)過點(diǎn),則雙曲線的離心率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐A-BCD中,ADBD,ACBC,∠DAB,∠BAC.三棱錐的外接球的表面積為16π,則該三棱錐的體積的最大值為(   )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案