某幾何體的三視圖如圖所示,主視圖和左視圖是長為3,寬為2的矩形,俯視圖是邊長為2的正方形,則該幾何體的體積為
 
考點:由三視圖求面積、體積
專題:計算題,空間位置關(guān)系與距離
分析:由該幾何體的三視圖可知,該幾何體的直觀圖是長方體去掉兩個角,即可求出該幾何體的體積.
解答: 解:由該幾何體的三視圖可知,該幾何體的直觀圖是長方體去掉兩個角,
則該幾何體的體積為V=2×2×3-2×
1
3
×
1
2
×2×2×3=8.
故答案為:8.
點評:本題主要考查三視圖的應(yīng)用,以及空間幾何體的體積計算,要求熟練掌握常見幾何體的體積公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PA⊥平面ABCD,四邊形ABCD是矩形,PA=AD=a,M、N分別是AB、PC的中點.
(Ⅰ)求平面PCD與平面ABCD所成二面角的大;
(Ⅱ)求證:平面MND⊥平面PCD;
(Ⅲ)當(dāng)AB的長度變化時,求異面直線PC與AD所成角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(1+x)n的展開式中,若第3項與第6項系數(shù)相等,且n等于多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖,圓O的內(nèi)接三角形ABC中,AB=9,AC=6,高AD=
27
5
,則圓O的直徑AE的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足條件
7x-5y-23≤0
x+7y-11≤0
4x+y+10≥0
,則4x-3y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x2與其在x=±1處的切線所圍成的圖形的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知極坐標(biāo)系的極點O與直角坐標(biāo)系的原點O重合,極軸Ox與x軸非負(fù)半軸重合,且兩坐標(biāo)系單位長度相同,則直線l:ρcosθ=2與圓C:
x=2cosφ
y=2+2sinφ
(0≤φ<2π)的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在[0,2]上的函數(shù)f(x)的圖象過點(1,3)且關(guān)于直線x=1對稱,已知f(x)≥1在定義域內(nèi)恒成立,且對于任意的x,y∈[0,1],若x+y≤1,則f(x+y)≥f(x)+f(y)-1.
(1)判斷函數(shù)f(x)在[0,1]上的單調(diào)性;
(2)證明:f(
1
3n
)≤
2
3n
+1,n∈N*;
(3)當(dāng)x∈[1,2]時,證明:7≤f(x)+6x≤13恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

長方體表面積為24cm2,各棱長總和為24cm,則其對角線長為
 
cm..

查看答案和解析>>

同步練習(xí)冊答案