【題目】已知橢圓與拋物線在第一象限的交點(diǎn)為,橢圓的左、右焦點(diǎn)分別為,其中也是拋物線的焦點(diǎn),且.

1)求橢圓的方程;

2)過(guò)的直線(不與軸重合)交橢圓兩點(diǎn),點(diǎn)為橢圓的左頂點(diǎn),直線分別交直線于點(diǎn),求證:為定值.

【答案】1;(2)證明見(jiàn)解析.

【解析】

1)根據(jù)題意,由拋物線性質(zhì)可求焦點(diǎn)坐標(biāo)和點(diǎn)坐標(biāo),結(jié)合橢圓定義,可求,計(jì)算即可求解;

2)設(shè),討論直線軸是否垂直,再根據(jù)直線與橢圓方程聯(lián)立方程組法,結(jié)合韋達(dá)定理,計(jì)算,即可證明.

1)拋物線的焦點(diǎn)為,

,∴,

,∴

,∴,

,∴,

又∵,∴,

∴橢圓的方程是:;

2)設(shè)

當(dāng)直線軸垂直時(shí),易得:

,∴,或者,

,∴

當(dāng)直線不垂直時(shí),設(shè)直線的方程為:,

聯(lián)方程組,消去整理得:,

所以:,

共線,

,得,同理:,

,

又因?yàn)?/span>

,則

綜上,為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的中心在原點(diǎn),焦點(diǎn)分別在軸與軸上,它們有相同的離心率,并且的短軸為的長(zhǎng)軸,的四個(gè)焦點(diǎn)構(gòu)成的四邊形面積是.

(1)求橢圓的方程;

(2)設(shè)是橢圓上非頂點(diǎn)的動(dòng)點(diǎn),與橢圓長(zhǎng)軸兩個(gè)頂點(diǎn),的連線分別與橢圓交于,點(diǎn).

(i)求證:直線斜率之積為常數(shù);

(ii)直線與直線的斜率之積是否為常數(shù)?若是,求出該值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解公司800名員工對(duì)公司食堂組建的需求程度,將這些員工編號(hào)為12,3,,800,對(duì)這些員工使用系統(tǒng)抽樣的方法等距抽取100人征求意見(jiàn),有下述三個(gè)結(jié)論:①若25號(hào)員工被抽到,則105號(hào)員工也會(huì)被抽到;②若32號(hào)員工被抽到,則1100號(hào)的員工中被抽取了10人;③若88號(hào)員工未被抽到,則10號(hào)員工一定未被抽到;其中正確的結(jié)論個(gè)數(shù)為(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線與圓 )相交于, , ,四個(gè)點(diǎn),

1)求的取值范圍;

2)設(shè)四邊形的面積為,當(dāng)最大時(shí),求直線與直線的交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A.回歸直線至少經(jīng)過(guò)其樣本數(shù)據(jù)中的一個(gè)點(diǎn)

B.從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吃地溝油與患胃腸癌有關(guān)系時(shí),我們就說(shuō)如果某人吃地溝油,那么他有99%可能患胃腸癌

C.在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

D.將一組數(shù)據(jù)的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,其方差也要加上或減去這個(gè)常數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時(shí),求函數(shù)的極小值;

(Ⅱ)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某度假酒店為了解會(huì)員對(duì)酒店的滿(mǎn)意度,從中抽取50名會(huì)員進(jìn)行調(diào)查,把會(huì)員對(duì)酒店的“住宿滿(mǎn)意度”與“餐飲滿(mǎn)意度”都分別五個(gè)評(píng)分標(biāo)準(zhǔn):1分(很不滿(mǎn)意);2分(不滿(mǎn)意);3分(一般);4分(滿(mǎn)意);5分(很滿(mǎn)意),其統(tǒng)計(jì)結(jié)果如下表(住宿滿(mǎn)意度為x,餐飲滿(mǎn)意度為y).

餐飲滿(mǎn)意度y

人數(shù)

住宿滿(mǎn)意度x

1

2

3

4

5

1

1

1

2

1

0

2

2

1

3

2

1

3

1

2

5

3

4

4

0

3

5

4

3

5

0

0

1

2

3

1)求“住宿滿(mǎn)意度”分?jǐn)?shù)的平均數(shù);

2)求“住宿滿(mǎn)意度”為3分時(shí)的5個(gè)“餐飲滿(mǎn)意度”人數(shù)的方差;

3)為提高對(duì)酒店的滿(mǎn)意度,現(xiàn)從的會(huì)員中隨機(jī)抽取2人征求意見(jiàn),求至少有1人的“住宿滿(mǎn)意度”為2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且直線是函數(shù)的一條切線.

(1)求的值;

(2)對(duì)任意的,都存在,使得,求的取值范圍;

(3)已知方程有兩個(gè)根,若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

中,角A、B、C的對(duì)邊分別為a、b、c,面積為S,已知

)求證:成等差數(shù)列;

)若.

查看答案和解析>>

同步練習(xí)冊(cè)答案