15.若不等式$\left\{\begin{array}{l}x-3≤0\\ y-2≥0\\ y≤x+1\end{array}\right.$表示的平面區(qū)域?yàn)棣,P、Q均為Ω內(nèi)一點(diǎn),O為坐標(biāo)原點(diǎn),z=-7x+3y,則下列判斷正確的是( 。
A.z的最小值為-1B.|OP|的最小值為$\sqrt{6}$C.z的最大值為-15D.|PQ|的最大值為$2\sqrt{2}$

分析 畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義,判斷求解即可.

解答 解:不等式$\left\{\begin{array}{l}x-3≤0\\ y-2≥0\\ y≤x+1\end{array}\right.$表示的平面區(qū)域?yàn)棣,如圖:
可得A(1,2),B(3,2),C(3,4).
z=-7x+3y,經(jīng)過可行域的A點(diǎn)時(shí),取得最大值:-7+6=-1.
經(jīng)過可行域的B點(diǎn)時(shí),取得最小值:-21+6=-15.
A到坐標(biāo)原點(diǎn)的距離最。$\sqrt{5}$.
AC兩點(diǎn)的距離最大:2$\sqrt{2}$.即|PQ|的最大值為:2$\sqrt{2}$.
故選:D.

點(diǎn)評(píng) 本題考查線性規(guī)劃的簡(jiǎn)單應(yīng)用,考查轉(zhuǎn)化思想以及數(shù)形結(jié)合思想的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某工廠進(jìn)行節(jié)能降耗技術(shù)改造,在四個(gè)月的過程中,其煤炭消耗量(單位:噸)的情況如表:
技術(shù)改造的月份x1234
煤炭消耗量y4.5432.5
顯然煤炭消耗量y與技術(shù)改造的月份x之間有較好的線性相關(guān)關(guān)系,則其線性回歸方程為(  )
A.$\widehat{y}$=0.7x+5.25B.$\widehat{y}$=-0.6x+5.25C.$\widehat{y}$=-0.7x+6.25D.$\widehat{y}$=-0.7x+5.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.判斷下列函數(shù)的奇偶性:
(1)f(x)=log2(x+1)+log2(x-1)是非奇非偶函數(shù);
(2)f(x)=log2(x2-1)是偶函數(shù);
(3)f(x)=log2(x+1)+log2(1-x)是偶函數(shù);
(4)f(x)=log2$\frac{1+x}{1-x}$是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.拋物線4y2=x的準(zhǔn)線方程為( 。
A.x=$\frac{1}{16}$B.x=-$\frac{1}{16}$C.x=$\frac{1}{2}$D.x=-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)ω>0,若函數(shù)f(x)=2sinωx在[-$\frac{π}{3}$,$\frac{π}{4}$]上單調(diào)遞增,則ω的取值范圍是(  )
A.(0,$\frac{1}{2}$]B.(1,$\frac{3}{2}$]C.[0,$\frac{3}{2}$]D.(0,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=Asin(?x+φ)(A>0,?>0,|φ|<π)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( 。
A.$f(x)=\sqrt{2}sin(x+\frac{π}{3})$B.$f(x)=\sqrt{2}sin(x-\frac{π}{3})$C.$f(x)=\sqrt{2}sin(2x+\frac{π}{3})$D.$f(x)=\sqrt{2}sin(2x-\frac{π}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是三個(gè)單位向量,且$\overrightarrow c$•$\overrightarrow a$=$\overrightarrow c$•$\overrightarrow b$>0,則對(duì)于任意的正實(shí)數(shù)t,|${\overrightarrow c$-t$\overrightarrow a$-$\frac{1}{t}$$\overrightarrow b}$|的最小值為$\frac{1}{2}$,則$\overrightarrow a$•$\overrightarrow b$=$\frac{1}{8}$或-$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.直線y=kx+1與雙曲線x2-$\frac{y^2}{4}$=1交于A,B兩點(diǎn),且|AB|=8$\sqrt{2}$,則實(shí)數(shù)k的值為( 。
A.$\sqrt{7}$B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=lg($\frac{2}{1-x}$-a)的圖象關(guān)于原點(diǎn)對(duì)稱,則a等于( 。
A.1B.0C.-1D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案