【題目】如圖,已知橢圓的左頂點,且點在橢圓上, 分別是橢圓的左、右焦點。過點作斜率為的直線交橢圓于另一點,直線交橢圓于點.
(1)求橢圓的標準方程;
(2)若為等腰三角形,求點的坐標;
(3)若,求的值.
【答案】(1)(2)(3)
【解析】試題分析:
(1)由題意得到關于的方程組,求解方程組可得橢圓的標準方程: ;
(2)由題意可得點在軸下方據(jù)此分類討論有: ,聯(lián)立直線的方程與橢圓方程可得;
(3)設直線的方程,聯(lián)立直線方程與橢圓方程,可得 利用幾何關系計算可得 ,利用點在橢圓上得到關于實數(shù)k的方程,解方程有: .
試題解析:
(1)由題意得,解得
∴橢圓的標準方程:
(2)∵為等腰三角形,且∴點在軸下方
若,則;
若,則,∴;
若,則,∴;
∴
∴直線的方程,由得或
∴
(3)設直線的方程,
由得
∴ ∴
∴ ∴
若,則∴,∴,∵,∴,∴與不垂直;
∴,∵, ,
∴直線的方程,直線的方程:
由 解得 ∴
又點在橢圓上得,即,即
∵,∴
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線經過點.曲線的極坐標方程為.
(1)求直線的普通方程與曲線的直角坐標方程;
(2)過點作直線的垂線交曲線于兩點(在軸上方),求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一家商場銷售一種商品,該商品一天的需求量在范圍內等可能取值,該商品的進貨量也在范圍內取值(每天進貨1次).這家商場每銷售一件該商品可獲利60元;若供不應求,可從其他商店調撥,銷售一件該商品可獲利40元;若供大于求,剩余的每處理一件該商品虧損20元.設該商品每天的需求量為,每天的進貨量為件,該商場銷售該商品的日利潤為元.
(1)寫出這家商場銷售該商品的日利潤為關于需求量的函數(shù)表達式;
(2)寫出供大于求,銷售件商品時,日利潤的分布列;
(3)當進貨量多大時,該商場銷售該商品的日利潤的期望值最大?并求出日利潤的期望值的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知矩形所在平面與所在平面互相垂直,,.
(1)若M為中點,N為中點,證明:平面;
(2)若,,且與平面所成角的正弦值為,求的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是橢圓的左、右焦點,為坐標原點,點在橢圓上,線段與軸的交點滿足.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)圓是以為直徑的圓,一直線與圓相切,并與橢圓交于不同的兩點、,當,且滿足時,求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,,為中點,沿直線將翻折成,使平面平面.點分別在線段上,若沿直線將四邊形向上翻折,使與重合,則__________,四棱錐的體積為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)寫出曲線的極坐標方程,并求出曲線與公共弦所在直線的極坐標方程;
(2)若射線與曲線交于兩點,與曲線交于點,且,求的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com