以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位.已知直線的參數(shù)方程為 (t為參數(shù),0<a<),曲線C的極坐標方程為

(I)求曲線C的直角坐標方程;

(II)設(shè)直線l與曲線C相交于A、B兩點,當a變化時,求|AB|的最小值.

 

【答案】

(I) ;(II) 4.

【解析】

試題分析:(I)利用,易得曲線C的直角坐標方程;(II)直線過點,根據(jù)直線的參數(shù)方程中的幾何意義,知道,將直線的參數(shù)方程與拋物線方程聯(lián)立,利用韋達定理轉(zhuǎn)化為關(guān)于a的函數(shù)式,求最值即可.

試題解析:(I)由,得,所以曲線C的直角坐標方程為;

(II)將直線l的參數(shù)方程代入,得,設(shè)兩點對應(yīng)的參數(shù)分別為,則, ,當時,的最小值為.

考點:1、極坐標方程與直角坐標方程的轉(zhuǎn)化 2、直線的參數(shù)方程及應(yīng)用 3、直線與圓錐曲線相交問題的綜合應(yīng)用 4、函數(shù)最值.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

以直角坐標系的原點O為極點,x軸的正半軸為極軸.已知點P的直角坐標為(1,-5),點M的極坐標為(4,
π
2
).若直線l過點P,且傾斜角為
π
3
,圓C以M為圓心、4為半徑.
(Ⅰ)求直線l的參數(shù)方程和圓C的極坐標方程;
(Ⅱ)試判定直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的單位長度.已知直線l經(jīng)過點P(1,1),傾斜角α=
π
6

(I)寫出直線l的參數(shù)方程是
x=
3
t+1
y=t+1
(t為參數(shù)),
x=
3
t+1
y=t+1
(t為參數(shù)),

(II)設(shè)l與圓ρ=2相交與兩點A、B,求點P到A、B兩點的距離之積是
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•許昌縣一模)以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系.已知點P的極坐標為(
2
π
4
),直線l過點P,且傾斜角為
3
,方程
x2
36
+
y2
16
=1所對應(yīng)的曲線經(jīng)過伸縮變換
x′=
1
3
x
y′=
1
2
y
后的圖形為曲線C.
(Ⅰ)求直線l的參數(shù)方程和曲線C的直角坐標系方程.
(Ⅱ)直線l與曲線C相交于兩點A,B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三題中任選兩題作答
(1)(2011年江蘇高考)已知矩陣A=
11
21
,向量β=
1
2
,求向量α,使得A2α=β
(2)(2011年山西六校?迹┮灾苯亲鴺讼档脑cO為極點,x軸的正半軸為極軸,已知點P的直角坐標為(1,-5),點M的極坐標為(4,
π
2
)
,若直線l過點P,且傾斜角為
π
3
,圓C以M為圓心、4為半徑.
①求直線l的參數(shù)方程和圓C的極坐標方程;  ②試判定直線l和圓C的位置關(guān)系.
(3)若正數(shù)a,b,c滿足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以直角坐標系的原點O為極點,x軸的正半軸為極軸.已知點P的直角坐標為(-1,5),點M的極坐標為(4,
π
2
).若直線l過點P,且傾斜角為
π
3
,圓C以M為圓心,半徑為4.
(Ⅰ)求直線l的參數(shù)方程和圓C的極坐標方程;
(Ⅱ)試判定直線l和圓C的位置關(guān)系.

查看答案和解析>>

同步練習冊答案