隨機(jī)變量X的分布列如下:
X
-1
0
1
P
a
b
c
其中a,b,c成等差數(shù)列,若E(X)=,則V(X)的值為________.
由題意知:a+c=2b,
E(X)=-1×a+c=,a+b+c=1.
∴a=,b=,c=,
∴D(X)=2×2×2×.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某校舉行中學(xué)生“日常生活小常識”知識比賽,比賽分為初賽和復(fù)賽兩部分,初賽采用選手從備選題中選一題答一題的方式進(jìn)行;每位選手最多有5次答題機(jī)會,選手累計答對3題或答錯3題即終止比賽,答對3題者直接進(jìn)入復(fù)賽,答錯3題者則被淘汰.已知選手甲答對每個題的概率均為,且相互間沒有影響.
(1)求選手甲進(jìn)入復(fù)賽的概率;
(2)設(shè)選手甲在初賽中答題的個數(shù)為,試求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)隨機(jī)變量的概率分布為
ε
0
1
2
P


1-
 
則ξ的數(shù)學(xué)期望的最小值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某單位有一臺電話交換機(jī),其中有8個分機(jī).設(shè)每個分機(jī)在1h內(nèi)平均占線10min,并且各個分機(jī)是否占線是相互獨(dú)立的,則任一時刻占線的分機(jī)數(shù)目X的數(shù)學(xué)期望為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

A、B兩個投資項目的利潤率分別為隨機(jī)變量X1和X2,根據(jù)市場分析,X1和X2的分布列分別為
X1
5%
10%
P
0.8
0.2
 
X2
2%
8%
12%
P
0.2
0.5
0.3
(1)在A,B兩個項目上各投資100萬元,Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差V(Y1)、V(Y2);
(2)將x(0≤x≤100)萬元投資A項目,100-x萬元投資B項目,f(x)表示投資A項目所得利潤的方差與投資B項目所得利潤的方差的和.求f(x)的最小值,并指出x為何值時,f(x)取到最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

第16屆亞運(yùn)會于2010年11月12日在廣州舉辦,運(yùn)動會期間來自廣州大學(xué)和中山大學(xué)的共計6名大學(xué)生志愿者將被隨機(jī)平均分配到跳水、籃球、體操這三個比賽場館服務(wù),且跳水場館至少有一名廣州大學(xué)志愿者的概率是.
(1)求6名志愿者中來自廣州大學(xué)、中山大學(xué)的各有幾人?
(2)設(shè)隨機(jī)變量X為在體操比賽場館服務(wù)的廣州大學(xué)志愿者的人數(shù),求X的分布列及均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若X是離散型隨機(jī)變量,,且,又已知,則( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

市民李先生居住在甲地,工作在乙地,他的小孩就讀的小學(xué)在丙地,三地之間的道路情況如圖所示.假設(shè)工作日不走其它道路,只在圖示的道路中往返,每次在路口選擇道路是隨機(jī)的.同一條道路去程與回程是否堵車相互獨(dú)立.假設(shè)李先生早上需要先開車送小孩去丙地小學(xué),再返回經(jīng)甲地趕去乙地上班.假設(shè)道路A,BD上下班時間往返出現(xiàn)擁堵的概率都是,道路C,E上下班時間往返出現(xiàn)擁堵的概率都是,只要遇到擁堵上學(xué)和上班的都會遲到.

(1)求李先生的小孩按時到校的概率;
(2)李先生是否有七成把握能夠按時上班?
(3)設(shè)X表示李先生下班時從單位乙到達(dá)小學(xué)丙遇到擁堵的次數(shù),求X的均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了響應(yīng)學(xué)!皩W(xué)科文化節(jié)”活動,數(shù)學(xué)組舉辦了一場數(shù)學(xué)知識比賽,共分為甲、乙兩組.其中甲組得滿分的有1個女生和3個男生,乙組得滿分的有2個女生和4個男生.現(xiàn)從得滿分的學(xué)生中,每組各任選2個學(xué)生,作為數(shù)學(xué)組的活動代言人.
(1)求選出的4個學(xué)生中恰有1個女生的概率;(2)設(shè)為選出的4個學(xué)生中女生的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案