【題目】2017年,在國(guó)家創(chuàng)新驅(qū)動(dòng)戰(zhàn)略下,北斗系統(tǒng)作為一項(xiàng)國(guó)家高科技工程,一個(gè)開放型的創(chuàng)新平臺(tái),1400多個(gè)北斗基站遍布全國(guó),上萬臺(tái)套設(shè)備組成星地“一張網(wǎng)”,國(guó)內(nèi)定位精度全部達(dá)到亞米級(jí),部分地區(qū)達(dá)到分米級(jí),最高精度甚至可以達(dá)到厘米或毫米級(jí)。最近北斗三號(hào)工程耗資9萬元建成一小型設(shè)備,已知這臺(tái)設(shè)備從啟用的第一天起連續(xù)使用,第天的維修保養(yǎng)費(fèi)為元,使用它直至“報(bào)廢最合算”(所謂“報(bào)廢最合算”是指使用這臺(tái)儀器的平均每天耗資最少)為止,一共使用了多少天,平均每天耗資多少錢?

【答案】使用600天,平均每天耗資。

【解析】試題分析:根據(jù)題意建立合適的函數(shù)模型表達(dá)式,再利用基本不等式進(jìn)行求解.

試題解析:設(shè)一共使用了天,平均每天耗資為元,則

當(dāng)且僅當(dāng)時(shí),即時(shí), 取得最小值,

所以一共使用600天,平均每天耗資。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3200元時(shí),可全部租出。當(dāng)每輛車的月租金每增加50元時(shí)(租金增減為50元的整數(shù)倍),未租出的車將會(huì)增加一輛。租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元。

(1)當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?

(2)設(shè)租金為(3200+50x)元/輛(xN),用x表示租賃公司的月收益y(單位:元)。

(3)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知所在的平面, 的直徑, 上一點(diǎn),且中點(diǎn), 中點(diǎn).

(1)求證: ;

(2)求證:

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線x2=2py(p>0)的頂點(diǎn)到焦點(diǎn)的距離為1,過點(diǎn)P(0,p)作直線與拋物線交于A(x1 , y1),
B(x2 , y2)兩點(diǎn),其中x1>x2
(1)若直線AB的斜率為 ,過A,B兩點(diǎn)的圓C與拋物線在點(diǎn)A處有共同的切線,求圓C的方程;
(2)若 ,是否存在異于點(diǎn)P的點(diǎn)Q,使得對(duì)任意λ,都有 ⊥( ﹣λ ),若存在,求Q點(diǎn)坐標(biāo);不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為為曲線上的動(dòng)點(diǎn),點(diǎn)在線段上,且滿足

1)求點(diǎn)的軌跡的直角坐標(biāo)方程;

2)直線的參數(shù)方程是為參數(shù)),其中 交于點(diǎn),求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合、的一個(gè)等濃二分劃(即,.記集合中所有數(shù)的積為,集合中所有數(shù)的積為,的等濃二分劃的特征數(shù).證明:

(1)集合的等濃二分劃的特征數(shù)一定為合數(shù);

(2)若等濃二分劃的特征數(shù)不為2的倍數(shù),則該特征數(shù)為的倍數(shù).

有限集合的元素個(gè)數(shù)簡(jiǎn)記為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】表示不超過的最大整數(shù),如

下面關(guān)于函數(shù)說法正確的序號(hào)是____________.(寫上序號(hào))

①當(dāng)時(shí),;

②函數(shù)的值域是

③函數(shù)與函數(shù)的圖像有4個(gè)交點(diǎn);

④方程根的個(gè)數(shù)為7個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知袋子中放有大小和形狀相同的小球若干,其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球1個(gè),標(biāo)號(hào)為2的小球個(gè).若從袋子中隨機(jī)抽取1個(gè)小球,取到標(biāo)號(hào)為2的小球的概率是.

(1)求的值;

(2)從袋子中有放回地隨機(jī)抽取2個(gè)小球,記第一次取出的小球標(biāo)號(hào)為,第二次取出的小球標(biāo)號(hào)為.

①記“”為事件,求事件的概率;

②在區(qū)間內(nèi)任取2個(gè)實(shí)數(shù),求事件“恒成立”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:

f1x=min{ft| a≤t≤x}x∈[a,b]),

f2x=max{ft| a≤t≤x}x∈[ab])。

其中,min{f(x)| x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值。若存在最小正整數(shù)k,使得f2x-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”。

(1)若f(x)=sinx,x[, ],請(qǐng)直接寫出f1x),f2(x)的表達(dá)式;

(2)已知函數(shù)f(x)=(x-1)2,x∈[-1,4],試判斷f(x)是否為[-1,4]上的“k階收縮函數(shù)”,如果是,求出對(duì)應(yīng)的k;如果不是,請(qǐng)說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案