已知A={a,b,c},B={-1,0,1},映射f:A→B滿足f(a)+f(b)=f(c),求映射f:A→B的個數(shù).

答案:
解析:

  解:(1)當A中三個元素都是對應0時,

  則f(a)+f(b)=0+0=0=f(c),有一個映射.

  (2)當A中三個元素對應B中兩個元素時,滿足f(a)+f(b)=f(c)的映射有4個,分別為1+0=1,0+1=1,(-1)+0=-1,0+(-1)=-1.

  (3)當A中的三個元素對應B中的三個元素時,有兩個映射,分別是(-1)+1=0,1+(-1)=0.

  因此滿足題設條件的映射有7個.

  思路分析:緊緊抓住映射f滿足的條件f(a)+f(b)=f(c).由于符合條件的映射有多種類型,需進行分類討論.可以就集合B中的有原象的元素個數(shù)進行分類討論,也可以就f(c)的情況進行分類討論.


提示:

  此題也可以這樣進行分類討論.

  (1)f(c)=-1,則有f(a)=-1,f(b)=0和f(a)=0,f(b)=-1兩種.

  (2)f(c)=0,則有f(a)=f(b)=0和f(a)=-1,f(b)=1及f(a)=1,f(b)=-1三種.

  (3)f(c)=1與(1)相似有兩種.因此共有7種不同的映射.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:設計必修一數(shù)學北師版 北師版 題型:013

已知A={a,b,c},B={-1,0,1},函數(shù)f:A→B滿足f(a)+f(b)+f(c)=0,則這樣的函數(shù)f(x)有

[  ]

A.4個

B.6個

C.7個

D.8個

查看答案和解析>>

科目:高中數(shù)學 來源:江蘇金練·高中數(shù)學、全解全練、數(shù)學必修4 題型:013

已知:=a+5b,=-2a+8b,=3(a-b),則

[  ]

A.A、B、D三點共線

B.A、B、C三點共線

C.B、C、D三點共線

D.A、C、D三點共線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

已知A{a,b,c,d},B{a,b,e,f,g,},C{b,gh}.求:

(1)AB;

(2)ABC;

(3)(AB)∪C

(4)A∪(BC)

(5)(AB)∩C;

(6)A∩(BC)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a=30.2,b=0.2-3,c=(-3)0.2,則a,b,c的大小關系為(  ).

A.a>b>c  B.b>a>c  C.c>a>b  D.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知A={a,b,c},B={-1,0,1},函數(shù)f:A→B滿足f(a)+f(b)+f(c)=0,則這樣的函數(shù)f(x)有


  1. A.
    4個
  2. B.
    6個
  3. C.
    7個
  4. D.
    8個

查看答案和解析>>

同步練習冊答案