拋物線的頂點是橢圓16x2+25y2=400的中心,而焦點是橢圓的右焦點,求此拋物線的方程.
橢圓方程可化為
x2
25
+
y2
16
=1,
∵c2=25-16=9,c=3,
故中心(0,0),右焦點為(3,0).
設拋物線的方程為y2=2px(p>0),
p
2
=3,故p=6,
所以拋物線方程為y2=12x.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)若拋物線的焦點是橢圓
x2
64
+
y2
16
=1
的左頂點,求此拋物線的標準方程;
(2)若雙曲線與橢圓
x2
64
+
y2
16
=1
有相同的焦點,與雙曲線
y2
2
-
x2
6
=1
有相同漸近線,求此雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點是橢圓
x2
4
+
y2
3
=1
的中心,焦點F與該橢圓的右焦點F重合,拋物線C與橢圓的交點為P,延長PF交拋物線C交于Q,
(1)求拋物線C的方程;
(2)求|PQ|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點是橢圓
x2
4
+
y2
3
=1
的中心,且焦點與該橢圓右焦點重合.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若P(a,0)為x軸上一動點,過P點作直線交拋物線C于A、B兩點.
(。┰OS△AOB=t•tan∠AOB,試問:當a為何值時,t取得最小值,并求此最小值.
(ⅱ)若a=-1,點A關于x軸的對稱點為D,證明:直線BD過定點.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省三校高三聯(lián)考理科數(shù)學 題型:解答題

(本題滿分15分) 已知拋物線的頂點是橢圓的中心,焦點與該橢圓的右焦點重合.

(1)求拋物線的方程;

(2)已知動直線過點,交拋物線、兩點.

若直線的斜率為1,求的長;

是否存在垂直于軸的直線被以為直徑的圓所截得的弦長恒為定值?如果存在,求出的方程;如果不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2008年廣東省廣州市海珠區(qū)高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

已知拋物線D的頂點是橢圓+=1的中心,焦點與該橢圓的右焦點重合.
(1)求拋物線D的方程;
(2)已知動直線l過點P(4,0),交拋物線D于A、B兩點,坐標原點O為PQ中點,求證:∠AQP=∠BQP;
(3)是否存在垂直于x軸的直線m被以AP為直徑的圓所截得的弦長恒為定值?如果存在,求出m的方程;如果不存在,說明理由.

查看答案和解析>>

同步練習冊答案