已知函數(shù)f(x)對(duì)一切實(shí)數(shù)x都有f(2-x)=f(2+x),若函數(shù)f(x)恰有4個(gè)零點(diǎn),則這些零點(diǎn)之間的和為_(kāi)_______.
8
分析:根據(jù)函數(shù)f(x)對(duì)一切實(shí)數(shù)x都有f(2-x)=f(2+x),可知函數(shù)f(x)的圖象關(guān)于直線(xiàn)x=2對(duì)稱(chēng),因此函數(shù)f(x)恰有4個(gè)零點(diǎn),兩兩關(guān)于直線(xiàn)x=2對(duì)稱(chēng),從而求得這些零點(diǎn)之間的和.
解答:∵函數(shù)f(x)對(duì)一切實(shí)數(shù)x都有f(2-x)=f(2+x),
∴函數(shù)f(x)的圖象關(guān)于直線(xiàn)x=2對(duì)稱(chēng),
設(shè)函數(shù)f(x)恰有4個(gè)零點(diǎn)分別為x1,x2,x3,x4,
則x1+x2+x3+x4=8,
故答案為8.
點(diǎn)評(píng):此題是個(gè)基礎(chǔ)題.考查函數(shù)的零點(diǎn)和函數(shù)的對(duì)稱(chēng)性以及函數(shù)的對(duì)稱(chēng)性的應(yīng)用.考查學(xué)生分析解決問(wèn)題的能力.