(本小題滿分l2分) 如圖,在多面體ABCDEF中,ABCD為菱形,ABC=60,EC面ABCD,F(xiàn)A面ABCD,G為BF的中點(diǎn),若EG//面ABCD.

(I)求證:EG面ABF;

(Ⅱ)若AF=AB,求二面角B—EF—D的余弦值.

 

【答案】

(Ⅰ)取AB的中點(diǎn)M,連結(jié)GM,MC,G為BF的中點(diǎn)……;(Ⅱ)=.

【解析】

試題分析:(Ⅰ)取AB的中點(diǎn)M,連結(jié)GM,MC,G為BF的中點(diǎn),

所以GM //FA,又EC面ABCD, FA面ABCD,

∵CE//AF,

∴CE//GM,………………2分

∵面CEGM面ABCD=CM,

EG// 面ABCD,

∴EG//CM,………………4分

∵在正三角形ABC中,CMAB,又AFCM

∴EGAB, EGAF,

∴EG面ABF.…………………6分

(Ⅱ)建立如圖所示的坐標(biāo)系,設(shè)AB=2,

則B()E(0,1,1) F(0,-1,2)

=(0,-2,1) , =(,-1,-1),   =(,1, 1),………………8分

設(shè)平面BEF的法向量=()則

     令,則,

=()…………………10分

同理,可求平面DEF的法向量  =(-

設(shè)所求二面角的平面角為,則

=.…………………12分

考點(diǎn):本題主要考查立體幾何中線面垂直及角的計(jì)算,空間向量的應(yīng)用

點(diǎn)評:典型題,立體幾何中平行、垂直關(guān)系的證明及角的計(jì)算問題是高考中的必考題,通過建立適當(dāng)?shù)淖鴺?biāo)系,可使問題簡化。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬沖刺考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分l2分)已知數(shù)列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N*).?dāng)?shù)列{bn}的前n項(xiàng)和為Sn,其中b1=-,bn+1=-Sn(n∈N*).

(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;

(2)若Tn+…+,求Tn的表達(dá)式

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬沖刺考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分l2分)已知橢圓的的右頂點(diǎn)為A,離心率,過左焦點(diǎn)作直線與橢圓交于點(diǎn)P,Q,直線AP,AQ分別與直線交于點(diǎn)

(Ⅰ)求橢圓的方程;

(Ⅱ)證明以線段為直徑的圓經(jīng)過焦點(diǎn)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年貴州省高三年級第五次月考文科數(shù)學(xué) 題型:解答題

(本小題滿分l2分)(注意:在試題卷上作答無效)

求經(jīng)過A(2,-1),和直線x+y=1相切,且圓心在直線y=-2x上的圓的方程

(I)求出圓的標(biāo)準(zhǔn)方程

(II)求出(I)中的圓與直線3x+4y=0相交的弦長AB

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高三上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿分l2分)設(shè)命題:函數(shù))的值域是;命題:指數(shù)函數(shù)上是減函數(shù).若命題“”是假命題,求實(shí)數(shù)的范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆山西省高二第二學(xué)期3月月考理科數(shù)學(xué)試卷 題型:解答題

(本小題滿分l2分)求垂直于直線并且與曲線相切的直線方程.

 

查看答案和解析>>

同步練習(xí)冊答案