在周長(zhǎng)為48的Rt△MPN中,∠MPN=90°,tan∠PMN=,求以M、N為焦點(diǎn),且過(guò)點(diǎn)P的雙曲線方程.

答案:
解析:

  解:∵△MPN的周長(zhǎng)為48,且tan∠PMN=,

  ∴設(shè)|PN|=3k,|PM|=4k,

  則|MN|=5k.

  由3k+4k+5k=48,得k=4.

  ∴|PN|=12,|PM|=16,|MN|=20.

  以MN所在直線為x軸,以MN的中點(diǎn)為原點(diǎn)建立直角坐標(biāo)系.

  設(shè)所求雙曲線方程為=1(a>0,b>0).

  由|PM|-|PN|=4,得2a=4,a=2,a2=4.

  由|MN|=20,得2c=20,c=10.

  則b2=c2-a2=96,所求雙曲線方程為=1.

  解析:首先應(yīng)建立適當(dāng)?shù)淖鴺?biāo)系.由于M、N為焦點(diǎn),所以建立如圖所示直角坐標(biāo)系,可知雙曲線方程為標(biāo)準(zhǔn)方程.由雙曲線定義可知||PM|-|PN||=2a,|MN|=2c,所以利用條件確定△MPN的邊長(zhǎng)是關(guān)鍵.


提示:

選取的坐標(biāo)系不同,則雙曲線的方程不同,但雙曲線的形狀不會(huì)發(fā)生變化,解題中應(yīng)注意合理選取坐標(biāo)系,這樣能使所求曲線的方程更簡(jiǎn)捷.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在周長(zhǎng)為48的Rt△MPN中,∠MPN=90°,tan∠PMN=,求以M、N為焦點(diǎn),且過(guò)點(diǎn)P的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在周長(zhǎng)為48的Rt△MPN中,∠MPN=90°,tan∠PMN=.求以M、N為焦點(diǎn),且過(guò)點(diǎn)P的雙曲線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案