已知函數(shù),

(1)判斷函數(shù)的奇偶性;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若關(guān)于的方程有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍

 

【答案】

(1)偶函數(shù);(2),;(3) 

【解析】

試題分析:(1)判斷奇偶性,需先分析函數(shù)的定義域要關(guān)于原點(diǎn)對(duì)稱,然后分析解析式的關(guān)系可得;(2)根據(jù)偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相反,所以可以考慮先分析時(shí)的單調(diào)性,于是在時(shí)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,然后再分析對(duì)稱區(qū)間上的單調(diào)性;(3)把方程的根轉(zhuǎn)化為函數(shù)的零點(diǎn),然后利用導(dǎo)數(shù)分析函數(shù)的最值,保證函數(shù)圖形與的交點(diǎn)的存在

試題解析:(1)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013122009545110603882/SYS201312200956503584585141_DA.files/image009.png">且關(guān)于坐標(biāo)原點(diǎn)對(duì)稱       1分

為偶函數(shù)                 4分

(2)當(dāng)時(shí),                5分

                              6分

所以可知:當(dāng)時(shí),單調(diào)遞減,

當(dāng)時(shí),單調(diào)遞增,           7分

又因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013122009545110603882/SYS201312200956503584585141_DA.files/image008.png">是偶函數(shù),所以在對(duì)稱區(qū)間上單調(diào)性相反,所以可得:

當(dāng)時(shí),單調(diào)遞增,

當(dāng)時(shí),單調(diào)遞減,           8分

綜上可得:的遞增區(qū)間是:,;

的遞減區(qū)間是: ,                           10分

(3)由,即,顯然,

可得:,當(dāng)時(shí), 

            12分

顯然,當(dāng)時(shí),,單調(diào)遞減,

當(dāng)時(shí),,單調(diào)遞增,

時(shí),             14分 

,所以可得為奇函數(shù),所以圖像關(guān)于坐標(biāo)原點(diǎn)對(duì)稱

所以可得:當(dāng)時(shí),            16分 

的值域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013122009545110603882/SYS201312200956503584585141_DA.files/image003.png">  ∴的取值范圍是       16分

考點(diǎn):奇偶性,導(dǎo)數(shù),函數(shù)的單調(diào)性,函數(shù)的最值

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)精英家教網(wǎng)(理)已知函數(shù)f(x)=
ln(2-x2)
|x+2|-2

(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)如圖給出的是與函數(shù)f(x)相關(guān)的一個(gè)程序框圖,試構(gòu)造一個(gè)公差不為零的等差數(shù)列
{an},使得該程序能正常運(yùn)行且輸出的結(jié)果恰好為0.請(qǐng)說(shuō)明你的理由.
(文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對(duì)角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對(duì)角線AC的長(zhǎng)為2,且
AB
AD
=0
,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點(diǎn)O、G、H是否共線,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西)若函數(shù)h(x)滿足
①h(0)=1,h(1)=0;
②對(duì)任意a∈[0,1],有h(h(a))=a;
③在(0,1)上單調(diào)遞減.則稱h(x)為補(bǔ)函數(shù).已知函數(shù)h(x)=(
1-xp
1+λxp
)
1
p
(λ>-1,p>0)
(1)判函數(shù)h(x)是否為補(bǔ)函數(shù),并證明你的結(jié)論;
(2)若存在m∈[0,1],使得h(m)=m,若m是函數(shù)h(x)的中介元,記p=
1
n
(n∈N+)時(shí)h(x)的中介元為xn,且Sn=
n
i=1
xi
,若對(duì)任意的n∈N+,都有Sn
1
2
,求λ的取值范圍;
(3)當(dāng)λ=0,x∈(0,1)時(shí),函數(shù)y=h(x)的圖象總在直線y=1-x的上方,求P的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(江西卷解析版) 題型:解答題

若函數(shù)h(x)滿足

(1)h(0)=1,h(1)=0;

(2)對(duì)任意,有h(h(a))=a;

(3)在(0,1)上單調(diào)遞減。則稱h(x)為補(bǔ)函數(shù)。已知函數(shù)

(1)判函數(shù)h(x)是否為補(bǔ)函數(shù),并證明你的結(jié)論;

(2)若存在,使得h(m)=m,若m是函數(shù)h(x)的中介元,記時(shí)h(x)的中介元為xn,且,若對(duì)任意的,都有Sn< ,求的取值范圍;

(3)當(dāng)=0,時(shí),函數(shù)y= h(x)的圖像總在直線y=1-x的上方,求P的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(理)已知函數(shù)數(shù)學(xué)公式
(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)如圖給出的是與函數(shù)f(x)相關(guān)的一個(gè)程序框圖,試構(gòu)造一個(gè)公差不為零的等差數(shù)列
{an},使得該程序能正常運(yùn)行且輸出的結(jié)果恰好為0.請(qǐng)說(shuō)明你的理由.
(文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對(duì)角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對(duì)角線AC的長(zhǎng)為2,且數(shù)學(xué)公式,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點(diǎn)O、G、H是否共線,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年上海市普陀區(qū)高考數(shù)學(xué)二模試卷(文理合卷)(解析版) 題型:解答題

(理)已知函數(shù)
(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)如圖給出的是與函數(shù)f(x)相關(guān)的一個(gè)程序框圖,試構(gòu)造一個(gè)公差不為零的等差數(shù)列
{an},使得該程序能正常運(yùn)行且輸出的結(jié)果恰好為0.請(qǐng)說(shuō)明你的理由.
(文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對(duì)角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對(duì)角線AC的長(zhǎng)為2,且,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點(diǎn)O、G、H是否共線,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案