對函數(shù)f(x)=xsin x,現(xiàn)有下列命題:①函數(shù)f(x)是偶函數(shù);②函數(shù)f(x)的最小正周期是2π;③點(diǎn)(π,0)是函數(shù)f(x)的圖象的一個(gè)對稱中心;④函數(shù)f(x)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.其中是真命題的是________.(寫出所有真命題的序號)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用階段檢測5練習(xí)卷(解析版) 題型:填空題
盒子里共有大小相同的3只白球,1只黑球.若從中隨機(jī)摸出兩只球,則它們顏色相同的概率是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用階段檢測3練習(xí)卷(解析版) 題型:填空題
設(shè)公比為q(q>0)的等比數(shù)列{an}的前n項(xiàng)和為Sn,若S2=3a2+2,S4=3a4+2,則q=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用階段檢測2練習(xí)卷(解析版) 題型:填空題
若M為△ABC所在平面內(nèi)一點(diǎn),且滿足(-)·(+-2 )=0,則△ABC為________三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用階段檢測1練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=ln ax- (a≠0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間及最值;
(2)求證:對于任意正整數(shù)n,均有1+(e為自然對數(shù)的底數(shù));
(3)當(dāng)a=1時(shí),是否存在過點(diǎn)(1,-1)的直線與函數(shù)y=f(x)的圖象相切?若存在,有多少條?若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用階段檢測1練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=x3+ax2-bx(a,b∈R),若y=f(x)在區(qū)間[-1,2]上是單調(diào)減函數(shù),則a+b的最小值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用階段檢測1練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=則f[f(-1)]等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用8練習(xí)卷(解析版) 題型:填空題
如圖,在正方形ABCD中,已知AB=2,M為BC的中點(diǎn),若N為正方形內(nèi)(含邊界)任意一點(diǎn),則·的最大值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用4練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=ax2-(2a+1)x+2ln x,a∈R.
(1)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2)求f(x)的單調(diào)區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com