已知E、F分別是正方體ABCD-A1B1C1D1的棱AA1、BB1的中點(diǎn),求EF與面ACC1A1所成的角.
考點(diǎn):直線與平面所成的角
專題:計(jì)算題,空間位置關(guān)系與距離,空間角
分析:由于EF∥AB,則AB與面ACC1A1所成的角即為EF與面ACC1A1所成的角.連接BD,由線面垂直的性質(zhì)和判定定理,即可得到∠BAD即為AB與面ACC1A1所成的角,且為45°,即可得到所求值.
解答: 解:由于EF∥AB,
則AB與面ACC1A1所成的角即為EF與面ACC1A1所成的角.
連接BD,則由正方形ABCD,可得,BD⊥AC,
A1A⊥平面ABCD,則A1A⊥BD,
則有BD⊥平面ACC1A1,
則∠BAD即為AB與面ACC1A1所成的角,且為45°.
則EF與面ACC1A1所成的角為45°.
點(diǎn)評:本題考查直線和平面所成的角的求法,考查線面垂直的判定和性質(zhì)及運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

“x≥0”是“x>0”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2x-2,x∈[1,+∞)
x2-2x,x∈(-∞,1)
,則函數(shù)y=f(x)-
1
4
的零點(diǎn)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,平面四邊形ABCD關(guān)于直線AC對稱,∠A=60°,∠C=
90°,CD=2,把△ABD沿BD折起(如圖2),使二面角A-BD-C為直二面角.如圖2,
(Ⅰ)求AD與平面ABC所成的角的余弦值;
(Ⅱ)求二面角B-AC-D的大小的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,△ABC是正三角形,∠PCA=90°,D是PA的中點(diǎn),二面角P-AC-B為120°,PC=2,AB=2
3
,取AC的中點(diǎn)O為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,如圖所示,BD交z軸于點(diǎn)E.
(1)求B、D、P三點(diǎn)的坐標(biāo);
(2)求BD與地面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:方程x2+ky2=2表示焦點(diǎn)在y軸上的橢圓;命題q:?x∈(0,+∞),k>x+
1
x
.如果命題“p∨q”為真,命題“p∧q”為假,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x,y滿足約束條件
5x+y≥5
x+y≤4
y-ex≥0
,則
y
x
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙F1:(x+1)2+y2=
1
9
,⊙F2:(x-1)2+y2=
121
9
,橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1,F(xiàn)2分別為橢圓C的兩個(gè)焦點(diǎn),設(shè)P為橢圓C上一點(diǎn),存在以P為圓心的⊙P與⊙F1外切,與⊙F2內(nèi)切.
(1)求橢圓C的方程;
(2)過點(diǎn)F2作斜率為k的直線與橢圓C相交于A,B兩點(diǎn),與y軸相交于點(diǎn)D,若
DA
=2
AF2
DB
BF2
,求λ的值.
(3)已知真命題:“如果點(diǎn)T(x0,y0)在橢圓
x2
a2
+
y2
b2
=1(a>b>0)上,那么過點(diǎn)T的橢圓的切線方程為
x0x
a2
+
y0y
b2
=1
.”利用上述結(jié)論,解答下面的問題:
已知點(diǎn)Q是直線l:x+2y=8上的動(dòng)點(diǎn),過點(diǎn)Q作橢圓C的兩條切線QM、QN,M、N為切點(diǎn),問直線MN是否過定點(diǎn)?若是,請求出定點(diǎn)坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,PA=AD=2,點(diǎn)M、N分別在棱PD、PC上,且PC⊥平面AMN.
(1)求AM與PD所成的角;
(2)求二面角P-AM-N的余弦值;
(3)求直線CD與平面AMN所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案