若F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
與橢圓
x2
25
+
y2
9
=1
的共同的左、右焦點(diǎn),點(diǎn)P是兩曲線的一個(gè)交點(diǎn),且△PF1F2為等腰三角形,則該雙曲線的漸近線方程是
 
分析:先根據(jù)兩曲線的焦點(diǎn)相同,得雙曲線中參數(shù)a、b間的一個(gè)等式,再利用橢圓的定義,在橢圓中計(jì)算兩個(gè)焦半徑PF1、PF2,再利用雙曲線的定義,即可得雙曲線的a值,從而確定雙曲線的標(biāo)準(zhǔn)方程,進(jìn)而求其漸近線方程.
解答:解:∵橢圓
x2
25
+
y2
9
=1
的焦點(diǎn)坐標(biāo)為(±4,0),
∴雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
中c=4,a2-b2=16  ①
設(shè)P為兩曲線在第一象限的交點(diǎn),
則在橢圓中,△PF1F2為等腰三角形,
∴PF1=F1F2=8,∴PF2=10-8=2
在雙曲線中,2a=PF1-PF2=6,∴a=3  ②
由①②得,雙曲線中a=3,b=
7
,
∴該雙曲線的漸近線方程是y=±
7
3
x

故答案為:y=±
7
3
x
點(diǎn)評(píng):本題主要考查了橢圓和雙曲線的定義及其標(biāo)準(zhǔn)方程,橢圓和雙曲線的幾何性質(zhì)的綜合運(yùn)用,恰當(dāng)?shù)脑趦汕中研究點(diǎn)P的特點(diǎn)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
與橢圓
x2
25
+
y2
9
=1
的共同焦點(diǎn),點(diǎn)P是兩曲線的一個(gè)交點(diǎn),且△PF1F2為等腰三角形,則該雙曲線的漸近線方程是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
與橢圓
x2
25
+
y2
9
=1
的共同焦點(diǎn),點(diǎn)P是兩曲線的一個(gè)交點(diǎn),且△PF1F2為等腰三角形,則該雙曲線的漸近線方程是(  )
A.3x±
2
y=0
B.
2
x±3y=0
C.3x±
7
y=0
D.
7
x±3y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若F1、F2是雙曲線=1的兩個(gè)焦點(diǎn),P在雙曲線上,且|PF1|·|PF2|=32,求∠F1PF2的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省臺(tái)州市高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

若F1,F(xiàn)2是雙曲線與橢圓的共同焦點(diǎn),點(diǎn)P是兩曲線的一個(gè)交點(diǎn),且△PF1F2為等腰三角形,則該雙曲線的漸近線方程是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案