f(x)=(
12
x的值域是
(0,+∞)
(0,+∞)
分析:由已知中的函數(shù)解析式,可得函數(shù)為指數(shù)函數(shù),結(jié)合指數(shù)函數(shù)的圖象和性質(zhì)可得答案.
解答:解:函數(shù)f(x)=(
1
2
x為指數(shù)函數(shù)
指數(shù)函數(shù)的值域為(0,+∞)
故f(x)=(
1
2
x的值域是(0,+∞)
故答案為:(0,+∞)
點評:本題考查的知識點是函數(shù)的值域,熟練掌握指數(shù)函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=lnx+aln(2-x).
(Ⅰ)求函數(shù)f(x)的定義域及其導數(shù)f'(x);
(Ⅱ)當a≥-1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當a=1時,令g(x)=f(x)+mx(m>0),若g(x)在(0,1]上的最大值為
12
,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)f(x)的導數(shù),f″(x)是函數(shù)f′(x)的導數(shù),f″(x)是函數(shù)f(x)的導數(shù),此時,稱f″(x)為原函數(shù)f(x)的二階導數(shù).若二階導數(shù)所對應(yīng)的方程f''(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)f(x)的“拐點”.某同學經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心.
設(shè)三次函數(shù)f(x)=2x3-3x2-24x+12請你根據(jù)上面探究結(jié)果,解答以下問題:
①函數(shù)f(x)=2x3-3x2-24x+12的對稱中心坐標為
(
1
2
,-
1
2
)
(
1
2
,-
1
2
)
;
②計算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)+f(
2013
2013
)
=
-1019
-1019

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=e2x+1-1,則它的反函數(shù)f-1(x)的解析式是
f-1(x)=
1
2
ln(x+1)-
1
2
,(x>-1)
f-1(x)=
1
2
ln(x+1)-
1
2
,(x>-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=loga(1+x)-loga(1-x)(a>0且a≠1)
(1)若不等式|f(x)|<2的解集為{x|-
1
2
<x<
1
2
}
,求a的值;
(2)(文)設(shè)f(x)的反函數(shù)為f-1(x),若關(guān)于x的不等式f-1(x)<m(m∈R)有解,求m的取值范圍.
(3)(理)設(shè)f(x)的反函數(shù)為f-1(x),若f-1(1)=
1
3
,解關(guān)于x的不等式f-1(x)<m(m∈R).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(m∈Z)
,則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上有函數(shù)f(x)=|x-{x}|(x∈R).對于函數(shù)f(x)給出如下判斷.
①函數(shù)y=f(x)是偶函數(shù);②函數(shù)f(x)是周期函數(shù);③函數(shù)y=f(x)在區(qū)間(-
1
2
1
2
]
上單調(diào)遞增;
④函數(shù)y=f(x)的圖象關(guān)于直線x=k+
1
2
(k∈Z)
對稱;⑤函數(shù)y=f(x)的圖象關(guān)于直線x=k(k∈Z)對稱.
以上判斷中正確的結(jié)論有
①②④⑤
①②④⑤
.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

同步練習冊答案
关 闭