已知函數(shù).
(1)求的最小正周期和最小值;
(2)若,求的值.

(1)最小正周期為,最小值為:;(2).

解析試題分析:(1)由二倍角的正弦、余弦公式化簡,再將正弦、余弦合為同一個的三角函數(shù)即可;(2)由函數(shù)的性質,將代入(1)解析式的x位置,可求得的值,再一步求得的值.
試題解析:(1),
所以,當時,有最小值
(2),
所以
因為,所以,所以,,所以
考點:1、三角恒等變換;2、三角函數(shù)的基本運算.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求的最小正周期;
(Ⅱ)當時,求的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)設扇形的周長是定值為,中心角.求證:當時該扇形面積最大;
(2)設.求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,其中
(1)求函數(shù)的最小正周期,并從下列的變換中選擇一組合適變換的序號,經(jīng)過這組變換的排序,可以把函數(shù)的圖像變成的圖像;(要求變換的先后順序)
①縱坐標不變,橫坐標變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic5/tikupic/e8/b/1ihla4.png" style="vertical-align:middle;" />倍,
②縱坐標不變,橫坐標變?yōu)樵瓉淼?倍,
③橫坐標不變,縱坐標變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic5/tikupic/8f/9/1bzla2.png" style="vertical-align:middle;" />倍,
④橫坐標不變,縱坐標變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic5/tikupic/fb/3/inxms1.png" style="vertical-align:middle;" />倍,
⑤向上平移一個單位,
⑥向下平移一個單位,
⑦向左平移個單位,
⑧向右平移個單位,
⑨向左平移個單位,
⑩向右平移個單位,
(2)在中角對應邊分別為,,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,角所對的邊分別為,且.
(Ⅰ)求函數(shù)的最大值;
(Ⅱ)若,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是半徑為2,圓心角為的扇形,是扇形的內接矩形.
(Ⅰ)當時,求的長;
(Ⅱ)求矩形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知向量,設函數(shù).
的最小正周期與單調遞增區(qū)間;
中,分別是角的對邊,若,的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的定義域;
(Ⅱ) 求函數(shù)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中常數(shù);
(1)若上單調遞增,求的取值范圍;
(2)令,將函數(shù)的圖像向左平移個單位,再向上平移1個單位,得到函數(shù)的圖像,區(qū)間)滿足:上至少含有30個零點,在所有滿足上述條件的中,求的最小值.

查看答案和解析>>

同步練習冊答案