已知f (x)=x+1,g (x)=2x+1,數(shù)列{an}滿足:a1=1,an+1=數(shù)學(xué)公式則數(shù)列{an}的前2007項(xiàng)的和為


  1. A.
    5×22008-2008
  2. B.
    3×22007-5020
  3. C.
    6×22006-5020
  4. D.
    6×21003-5020
D
分析:根據(jù)題意可得a2n+2=a2n+1+1,從而可知數(shù)列{a2n+2}是以2為公比、以a2=a1+1=2為首項(xiàng)的等比數(shù)列.進(jìn)而有a2n+a2n+1=a2n+2a2n+1=3a2n+1,故求數(shù)列{an}的前2007項(xiàng)的和,分組求和可得.
解答:∵a2n+2=a2n+1+1=(2a2n+1)+1=2a2n+2,
∴a2n+2+2═2(a2n+2),
∴數(shù)列{a2n+2}是以2為公比、以a2=a1+1=2為首項(xiàng)的等比數(shù)列.
∴a2n+2=2×2n-1
∴a2n=2n-2.
又a2n+a2n+1=a2n+2a2n+1=3a2n+1,
∴數(shù)列{an}的前2007項(xiàng)的和為
a1+(a2+a3)+(a4+a5)+(a6+a7)+…+(a2006+a2007
=a1+(3a2+1)+(3a4+1)+(3a6+1)+…+(3a2006+1)
=1+(3×2-5)+(3×22-5)+(3×23-5)+…+(3×21003-5)
=1+(3×2-5)+(3×22-5)+(3×23-5)+…+(3×21003-5)
=3×(2+22+23+…+21003+1-5×1003
=6×(21003-1)+1-5×1003=6×21003-5020,
故選D
點(diǎn)評(píng):本題以函數(shù)為載體,考查等比關(guān)系的確定,關(guān)鍵是正確運(yùn)用條件得出a2n+a2n+1,故可求.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f (x)、g(x)都是定義在R上的函數(shù),如果存在實(shí)數(shù)m、n使得h (x)=m f(x)+ng(x),那么稱h (x)為f (x)、g(x)在R上生成的函數(shù).設(shè)f (x)=x2+x、g(x)=x+2,若h (x)為f (x)、g(x)在R上生成的一個(gè)偶函數(shù),且h(1)=3,則函數(shù)h (x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若k=
1
3
,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問(wèn)是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間[
1
2
,a]
上的值域?yàn)?span id="7d16u1q" class="MathJye">[
1
a
,1],若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
x
+
1
x
+
x+
1
x
+1
g(x)=
x
+
1
x
-
x+
1
x
+1

(1)分別求f(x)、g(x)的定義域,并求f(x)•g(x)的值;(2)求f(x)的最小值并說(shuō)明理由;
(3)若a=
x2+x+1
 , b=t
x
 , c=x+1
,是否存在滿足下列條件的正數(shù)t,使得對(duì)于任意的正
數(shù)x,a、b、c都可以成為某個(gè)三角形三邊的長(zhǎng)?若存在,則求出t的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學(xué)公式,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問(wèn)是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學(xué)公式上的值域?yàn)?img class='latex' alt='數(shù)學(xué)公式' src='http://thumb.zyjl.cn/pic5/latex/769.png' />,若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識(shí)訓(xùn)練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問(wèn)是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214609557716869/SYS201310232146095577168019_ST/2.png">,若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案