【題目】在三棱錐中,底面,,,是的中點,是線段上的一點,且,連接,,.
(1)求證:平面;
(2)求點到平面的距離.
【答案】(1)見解析;(2).
【解析】試題分析:(1)由題意,根據(jù)勾股定理可計算出,又,易知為的中點,由三角形中位線性質可知,與平行,再根據(jù)線面平行的判定定理,從而問題可得解;
(2)由題意,可采用等體積法進行求解運算.即由,又其底面與均為直角三角形,從而問題可得解.
試題解析:(1)因為,所以.
又,,
所以在中,由勾股定理,
得.
因為,
所以是的斜邊上的中線.
所以是的中點.
又因為是的中點,
所以直線是的中位線,
所以.
又因為平面,平面,
所以平面.
(2)由(1)得,.
又因為,.
所以.
又因為,
所以.
易知,且,
所以.
設點到平面的距離為,
則由,
得,
即,
解得.
即點到平面的距離為.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,過點的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于兩點.
(Ⅰ)寫出曲線的直角坐標方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】第一屆“一帶一路”國際合作高峰論壇于2017年5月14日至15日在北京舉行,為了保護各國國家元首的安全,某部門將5個安保小組安排到指定的三個區(qū)域內工作,且每個區(qū)域至少有一個安保小組,則這樣的安排方法共有________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為定義域R上的奇函數(shù),且在R上是單調遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則( )
A. 45B. 15C. 10D. 0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某次的一次學科測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.
(Ⅰ)求參加測試的總人數(shù)及分數(shù)在[80,90)之間的人數(shù);
(Ⅱ)若要從分數(shù)在[80,100)之間的試卷中任取兩份分析學生失分情況,求在抽取的試卷中,恰有一份分數(shù)在[90,100)之間的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),為實數(shù),
(1)若函數(shù)在區(qū)間上是單調函數(shù),求實數(shù)的范圍;
(2)若對任意,都有成立,求實數(shù)的值;
(3)若,求函數(shù)的最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校學生社團心理學研究小組在對學生上課注意力集中情況的調查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時間(單位:分鐘)之間的關系滿足如圖所示的曲線.當時,曲線是二次函數(shù)圖象的一部分,當時,曲線是函數(shù)圖象的一部分.根據(jù)專家研究,當注意力指數(shù)大于80時學習效果最佳.
(1)試求的函數(shù)關系式;
(2)教師在什么時段內安排核心內容,能使得學生學習效果最佳?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中,正確說法的個數(shù)是( )
①在用列聯(lián)表分析兩個分類變量與之間的關系時,隨機變量的觀測值越大,說明“與有關系”的可信度越大
②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設,將其變換后得到線性方程,則的值分別是和0. 3
③已知兩個變量具有線性相關關系,其回歸直線方程為,若,,則
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在三棱臺中,點在上,且,點是內(含邊界)的一個動點,且有平面平面,則動點的軌跡是( )
A. 平面B. 直線C. 線段,但只含1個端點D. 圓
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com