【題目】已知數(shù)列和滿足:,,且對一切,均有.
(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(2)求數(shù)列的前項和;
(3)設(shè),記數(shù)列的前項和為,求正整數(shù),使得對任意,均有.
【答案】(1)證明見解析;(2);(3).
【解析】
(1)在等式兩邊同時除以,可得出,利用等差數(shù)列的定義可證明出數(shù)列為等差數(shù)列,求出數(shù)列的通項公式,可得出數(shù)列的通項公式;
(2)先求出的值,由時,由,可得出,兩式相除可得出的表達(dá)式,再對是否滿足在的表達(dá)式,即可得出數(shù)列的通項公式,再利用等比數(shù)列的求和公式求出;
(3)令,利用數(shù)列的單調(diào)性求出滿足的最大整數(shù)的值為,即可得出結(jié)論.
(1)由,,
兩邊除以,得,即,所以,數(shù)列為等差數(shù)列.
,所以,;
(2)當(dāng)時,.
對任意的,,則;
當(dāng)時,由可得,
兩式相除得,
滿足,所以,對任意的,,,
即數(shù)列是公比為的等比數(shù)列,且首項為,因此,;
(3),令,即,即,
構(gòu)造數(shù)列,則,
當(dāng)時,則有,即;
當(dāng)時,;
當(dāng)時,,即,可得.
所以,數(shù)列最大項的值為,又,,
當(dāng)時,.
所以,當(dāng)時,,此時;當(dāng)時,,此時.
綜上所述,數(shù)列中,最大,因此,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)甲、乙兩位同學(xué)上學(xué)期間,每天7:30之前到校的概率均為.假定甲、乙兩位同學(xué)到校情況互不影響,且任一同學(xué)每天到校情況相互獨立.
(Ⅰ)用表示甲同學(xué)上學(xué)期間的三天中7:30之前到校的天數(shù),求隨機變量的分布列和數(shù)學(xué)期望;
(Ⅱ)設(shè)為事件“上學(xué)期間的三天中,甲同學(xué)在7:30之前到校的天數(shù)比乙同學(xué)在7:30之前到校的天數(shù)恰好多2”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求在點處的切線方程;
(2)若不等式恒成立,求k的取值范圍;
(3)函數(shù),設(shè),記在上得最大值為,當(dāng)最小時,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】節(jié)能環(huán)保日益受到人們的重視,水污染治理也已成為“十三五”規(guī)劃的重要議題.某地有三家工廠,分別位于矩形的兩個頂點、及的中點處,,,為了處理三家工廠的污水,現(xiàn)要在該矩形區(qū)域上(含邊界),且與、等距離的一點處,建造一個污水處理廠,并鋪設(shè)三條排污管道、、.設(shè)∠BAO=x(弧度),排污管道的總長度為.
(1)將表示為的函數(shù);
(2)試確定點的位置,使鋪設(shè)的排污管道的總長度最短,并求總長度的最短公里數(shù)(精確到).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:“若,為異面直線,平面過直線且與直線平行,則直線與平面的距離等于異面直線,之間的距離”為真命題.根據(jù)上述命題,若,為異面直線,且它們之間的距離為,則空間中與,均異面且距離也均為的直線的條數(shù)為( )
A.0條B.1條C.多于1條,但為有限條D.無數(shù)多條
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于由有限個自然數(shù)組成的集合A,定義集合S(A)={a+b|a∈A,b∈A},記集合S(A)的元素個數(shù)為d(S(A)).定義變換T,變換T將集合A變換為集合T(A)=A∪S(A).
(1)若A={0,1,2},求S(A),T(A);
(2)若集合A有n個元素,證明:“d(S(A))=2n-1”的充要條件是“集合A中的所有元素能組成公差不為0的等差數(shù)列”;
(3)若A{1,2,3,4,5,6,7,8}且{1,2,3,…,25,26}T(T(A)),求元素個數(shù)最少的集合A.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點,且經(jīng)過點,它的一個焦點與拋物線E:的焦點重合,斜率為k的直線l交拋物線E于A、B兩點,交橢圓于C、D兩點.
(1)求橢圓的方程;
(2)直線l經(jīng)過點,設(shè)點,且的面積為,求k的值;
(3)若直線l過點,設(shè)直線,的斜率分別為,,且,,成等差數(shù)列,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率,分別是橢圓的左右兩個頂點,圓的半徑為,過點作圓的切線,切點為,在軸的上方交橢圓于點.
(1)求直線的方程;
(2)求的值;
(3)設(shè)為常數(shù),過點作兩條互相垂直的直線,分別交橢圓于點,分別交圓于點,記三角形和三角的面積分別為.求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com