已知函數(shù)f(x)=ax2+x-xlnx(a>0)(a∈R)
(1)若a=0,判斷函數(shù)的單調(diào)性
(2)函數(shù)f(x)滿足f(1)=2,且在定義域內(nèi)f(x)≥bx2+2x恒成立,求實(shí)數(shù)b的取值范圍;
(3)當(dāng)
1
e
<x<y<1時(shí),試比較
y
x
1+lny
1+lnx
的大。
分析:(1)把a(bǔ)=0代入函數(shù)解析式,求出導(dǎo)函數(shù)的零點(diǎn),由導(dǎo)函數(shù)的零點(diǎn)對定義域分段,根據(jù)導(dǎo)函數(shù)在每段的符號可得原函數(shù)的單調(diào)區(qū)間;
(2)由f(1)=2求出a的值,把f(x)代入f(x)≥bx2+2x,分離變量b后得到b≤1-
1
x
-
lnx
x
,利用導(dǎo)數(shù)求函數(shù)g(x)=1-
1
x
-
lnx
x
的最小值,則b的取值范圍可求;
(3)由(Ⅱ)知g(x)=1-
1+lnx
x
在(0,1)上單調(diào)遞減,因?yàn)?span id="6gfilms" class="MathJye">
1
e
<x<y<1,利用函數(shù)單調(diào)性可比較
y
x
1+lny
1+lnx
的大。
解答:解:(1)當(dāng)a=0時(shí),f(x)=x-xlnx,函數(shù)定義域?yàn)椋?,+∞).
f(x)=-lnx,由-lnx=0,得x=1.
x∈(0,1)時(shí),f(x)>0,f(x)在(0,1)上是增函數(shù).
x∈(1,+∞)時(shí),f(x)<0f(x)在(1,+∞)上是減函數(shù);
(2)由f(1)=2,得a=1,所以f(x)=x2+x-xlnx,由f(x)≥bx2+2x,得b≤1-
1
x
-
lnx
x

g(x)=1-
1
x
-
lnx
x
,可得g(x)在(0,1]上遞減,在[1,+∞)上遞增.
∴g(x)min=g(1)=0
即b≤0;
(3)由(Ⅱ)知g(x)=1-
1+lnx
x
在(0,1)上單調(diào)遞減
1
e
<x<y<1
時(shí),g(x)>g(y)
1+lnx
x
1+lny
y

1
e
<x<y<1
時(shí),-1<lnx<0,∴1+lnx>0
y
x
1+lny
1+lnx
點(diǎn)評:本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)求閉區(qū)間上的最值,考查了分離變量法,訓(xùn)練了利用函數(shù)單調(diào)性比較不等式的大小是有一定難度題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案