【題目】已知橢圓的長軸長為,焦距為2,拋物線的準線經(jīng)過的左焦點.

(1)求的方程;

(2)直線經(jīng)過的上頂點且交于兩點,直線,分別交于點(異于點),(異于點),證明:直線的斜率為定值.

【答案】(1)的方程為的方程為.(2)證明見解析

【解析】

(1)長軸長為,焦距為,在橢圓中,求出的值,寫出橢圓方程;寫出拋物線的準線方程,代入點坐標,求出的值,寫出拋物線方程.

(2)先探究直線的斜率是否存在,寫出直線方程,再與曲線方程聯(lián)立求解.

(1)解:由題意,得,所以,所以,所以的方程為,

所以,由于的準線經(jīng)過點,所以

所以,故的方程為.

(2)證明:由題意知,的斜率存在,故設直線的方程為,

,得.

,,則,

,.

又直線的方程為,

所以,所以,從而的坐標為.

同理可得的坐標為,

所以為定值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知命題:關于的不等式無解;命題:指數(shù)函數(shù)上的增函數(shù).

(1)若命題為真命題,求實數(shù)的取值范圍;

(2)若滿足為假命題且為真命題的實數(shù)取值范圍是集合,集合,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若存在實數(shù),使得,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某“雙一流”大學專業(yè)獎學金是以所學專業(yè)各科考試成績作為評選依據(jù),分為專業(yè)一等獎學金(獎金額元)、專業(yè)二等獎學金(獎金額元)及專業(yè)三等獎學金(獎金額元),且專業(yè)獎學金每個學生一年最多只能獲得一次.圖(1)是統(tǒng)計了該校名學生周課外平均學習時間頻率分布直方圖,圖(2)是這名學生在年周課外平均學習時間段獲得專業(yè)獎學金的頻率柱狀圖.

(Ⅰ)求這名學生中獲得專業(yè)三等獎學金的人數(shù);

(Ⅱ)若周課外平均學習時間超過小時稱為“努力型”學生,否則稱為“非努力型”學生,列聯(lián)表并判斷是否有的把握認為該校學生獲得專業(yè)一、二等獎學金與是否是“努力型”學生有關?

(Ⅲ)若以頻率作為概率,從該校任選一名學生,記該學生年獲得的專業(yè)獎學金額為隨機變量,求隨機變量的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,,E,F分別為線段 的中點.

1)求證:;

2)求證:;

3)在線段上是否存在一點G,使平面平面,證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】.

(Ⅰ)當時,求曲線在點處的切線方程;

(Ⅱ)當時,在內(nèi)是否存在一實數(shù),使成立?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高三年級有學生500人,其中男生300人,女生200人,為了研究學生的數(shù)學成績是否與性別有關,現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,先統(tǒng)計了他們期中考試的數(shù)學分數(shù),然后按性別分為男、女兩組,再將兩組學生的分數(shù)分成5組:[100,110),[110120),[120130),[130,140)[140,150]分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

1)從樣本中分數(shù)小于110分的學生中隨機抽取2人,求兩人恰好為一男一女的概率;

2)若規(guī)定分數(shù)不小于130分的學生為數(shù)學尖子生,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認為數(shù)學尖子生與性別有關

附:

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在中老年人群體中,腸胃病是一種高發(fā)性疾病某醫(yī)學小組為了解腸胃病與運動之間的聯(lián)系,調(diào)查了50位中老年人每周運動的總時長(單位:小時),將數(shù)據(jù)分成[0,4),[4,8),[8,14),[14,16),[16,20),[20,24]6組進行統(tǒng)計,并繪制出如圖所示的柱形圖.

圖中縱軸的數(shù)字表示對應區(qū)間的人數(shù)現(xiàn)規(guī)定:每周運動的總時長少于14小時為運動較少.

每周運動的總時長不少于14小時為運動較多.

1)根據(jù)題意,完成下面的2×2列聯(lián)表:

有腸胃病

無腸胃病

總計

運動較多

運動較少

總計

2)能否有99.9%的把握認為中老年人是否有腸胃病與運動有關?

附:K2na+b+c+d

PK2k

0.0.50

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年開始,國家逐步推行全新的高考制度,新高考不再分文理科,采用3+3模式,其中語文、數(shù)學、外語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物6門科目中自選3門參加考試(63),每科目滿分100.為了應對新高考,某高中從高一年級1000名學生(其中男生550人,女生450人)中,根據(jù)性別分層,采用分層抽樣的方法抽取名學生進行調(diào)查.

1)已知抽取的名學生中含男生55人,求的值;

2)為了了解學生對自選科目中“物理”和“地理”兩個科目的選課意向,對在(1)條件下抽取到的名學生進行問卷調(diào)查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目),如表是根據(jù)調(diào)查結果得到的列聯(lián)表,請將列聯(lián)表補充完整,并判斷是否有的把握認為選擇科目與性別有關?說明你的理由;

選擇“物理”

選擇“地理”

總計

男生

10

女生

25

總計

3)在抽取到的選擇“地理”的學生中按分層抽樣抽取6名,再從這6名學生中隨機抽取3人,設這3人中女生的人數(shù)為,求的分布列及數(shù)學期望.

附參考公式及數(shù)據(jù):,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

同步練習冊答案