【題目】如圖,四棱錐,,,,為等邊三角形,平面平面,為中點.
(1)求證:平面;
(2)求二面角的余弦值.
【答案】(1)見解析;(2)
【解析】
(1)證明及,即可證明:平面,問題得證。
(2)建立空間直角坐標系,由(1)得為平面的法向量,求得平面的法向量為,利用空間向量夾角的數(shù)量積表示即可求得二面角的余弦值.
(1)證明:因為,,
所以,
又平面平面,且平面平面,
所以平面.
又平面,所以,
因為為中點,且為等邊三角形,所以.
又,所以平面.
(2)取中點為,連接,因為為等邊三角形,所以,
因為平面平面,所以平面,
所以,由,,
可知,所以.
以中點為坐標原點,分別以,,所在直線為,,軸,建立如圖所示的空間直角坐標系.
所以,,,,,
所以,,
由(1)知,為平面的法向量,
因為為的中點,
所以,
所以,
設(shè)平面的法向量為,
由,得,
取,則.
所以 .
因為二面角為鈍角,
所以,二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xex-alnx(無理數(shù)e=2.718…).
(1)若f(x)在(0,1)單調(diào)遞減,求實數(shù)a的取值范圍;
(2)當a=-1時,設(shè)g(x)=x(f(x)-xex)-x3+x2-b,若函數(shù)g(x)存在零點,求實數(shù)b的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的短軸長為,且橢圓的一個焦點在圓上.
(1)求橢圓的方程;
(2)已知橢圓的焦距小于,過橢圓的左焦點的直線與橢圓相交于兩點,若,求
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學和英語是考生的必考科目,考生還須從物理、化學、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目.若一名學生從六個科目中選出了三個科目作為選考科目,則稱該學生的選考方案確定;否則,稱該學生選考方案待確定.例如,學生甲選擇“物理、化學和生物”三個選考科目,則學生甲的選考方案確定,“物理、化學和生物”為其選考方案.
某學校為了了解高一年級420名學生選考科目的意向,隨機選取30名學生進行了一次調(diào)查,統(tǒng)計選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學 | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有6人 | 6 | 6 | 3 | 1 | 2 | 0 |
選考方案待確定的有8人 | 5 | 4 | 0 | 1 | 2 | 1 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 0 | 0 | 1 | 1 |
(Ⅰ)試估計該學校高一年級確定選考生物的學生有多少人?
(Ⅱ)寫出選考方案確定的男生中選擇“物理、化學和地理”的人數(shù).(直接寫出結(jié)果)
(Ⅲ)從選考方案確定的男生中任選2名,試求出這2名學生選考科目完全相同的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知點為拋物線的焦點,過點的直線交拋物線于、兩點,點在拋物線上,使得的重心在軸上,直線交軸于點,且在點的右側(cè).記、的面積分別、.
(1)求的值及拋物線的方程;
(2)求的最小值及此時點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,平面,, .,,,是的中點.
(Ⅰ)證明:⊥平面;
(Ⅱ)若二面角的余弦值是,求的值;
(Ⅲ)若,在線段上是否存在一點,使得⊥. 若存在,確定點的位置;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com