已知f(x)滿足f(x+2)=f(x),且當(dāng)0≤x<2時,f(x)=x3-x,則函數(shù)y=f(x)的圖象在區(qū)間[0,6]上與x軸的交點的個數(shù)為(  )
A、6B、7C、8D、9
考點:函數(shù)的零點與方程根的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由條件可得可得函數(shù)的周期為2,由于當(dāng)0≤x<2時,f(x)=x3-x=x(x+1)(x-1)的零點有2個,可得函數(shù)在區(qū)間[0,6]上的零點個數(shù)為6,從而得出結(jié)論.
解答: 解:由f(x+2)=f(x),可得函數(shù)的周期為2.
由于當(dāng)0≤x<2時,f(x)=x3-x=x(x+1)(x-1),
故函數(shù)在一個周期[0,2)上的零點有2個:x=0 x=1
故函數(shù)在區(qū)間[0,6]上的零點個數(shù)為6.
由于函數(shù)y=f(x)的圖象在區(qū)間[0,6]上與x軸的交點的個數(shù),即函數(shù)在區(qū)間[0,6]上的零點個數(shù),
故選:A.
點評:本題主要考查函數(shù)的零點的定義,利用函數(shù)的周期性求函數(shù)的零點個數(shù),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①終邊相同的角的同名函數(shù)值相等;
②終邊不同的角的同名函數(shù)值不相等;
③若sinα>0,則α是第一或第二象限的角;
④若α是第二象限角,且P(x,y)是其終邊上的一點,則cosα=
-x
x2+y2
;
⑤若α、β是第二象限的角,且α>β,則cosα<cosβ.
其中正確的命題有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的個數(shù)是(  )
(1)若直線l上有無數(shù)個點不在α內(nèi),則l∥α
(2)若直線l與平面α平行,l與平面α內(nèi)的任意一直線平行
(3)兩條平行線中的一條直線與平面平行,那么另一條也與這個平面平行
(4)若一直線a和平面α內(nèi)一直線b平行,則a∥α
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖程序:如果輸入5,則該程序運行結(jié)果為( 。
A、1B、10C、25D、26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a3+a7=15,則a2+a8=( 。
A、10B、15C、12D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cos3φ,sin3φ),
b
=(cos(α-φ),sin(α-φ)),φ∈[0,
π
4
],
b
=x
a
(x>0).
(1)求|
a
|的取值范圍;
(2)設(shè)
3
cosα=y,求y與x的函數(shù)關(guān)系式y(tǒng)=f(x),并指出其定義域;
(3)設(shè)正項數(shù)列{an}滿足a1=1,an+1=f(an),求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間四邊形ABCD的每條邊和對角線的長都等于a,點M、N分別是邊AB、CD的中點,求證:
(1)MN為AB和CD的公垂線;     
(2)求MN的長;
(3)求異面直線AN與CM所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直四棱柱ABCD-A1B1C1D1的底面ABCD為菱形,AB=1,AA1=
6
2
,∠ABC=60°.證明:BD1⊥平面AB1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2sin(2ωx-
π
6
)+λ(x∈R)的圖象關(guān)于直線x=π對稱,其中ω,λ為常數(shù),且ω∈(
1
2
,1)
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點(
π
4
,0),求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案