【題目】以下結(jié)論正確的序號(hào)有_________
(1)根據(jù)列聯(lián)表中的數(shù)據(jù)計(jì)算得出≥6.635, 而P(≥6.635)≈0.01,則有99% 的把握認(rèn)為兩個(gè)分類(lèi)變量有關(guān)系.
(2)在殘差圖中,殘差點(diǎn)比較均勻落在水平的帶狀區(qū)域中即可說(shuō)明選用的模型比較合適,與帶狀區(qū)域的寬度無(wú)關(guān).
(3)在線(xiàn)性回歸分析中,相關(guān)系數(shù)為,越接近于1,相關(guān)程度越大;越小,相關(guān)程度越小.
(4)在回歸直線(xiàn)中,變量時(shí),變量的值一定是15.
【答案】(1)(3).
【解析】分析:根據(jù)獨(dú)立性檢驗(yàn)、殘差圖、相關(guān)系數(shù)、回歸分析的定義及性質(zhì),逐一分析四個(gè)答案的真假即可.
詳解:對(duì)于(1),根據(jù)2×2列聯(lián)表中的數(shù)據(jù)計(jì)算得出≥6.635, 而P(≥6.635)≈0.01,則有99%的把握認(rèn)為兩個(gè)分類(lèi)變量有關(guān)系,故(1)正確.
對(duì)于(2),根據(jù)殘差圖的意義可得,當(dāng)帶狀區(qū)域的寬度較小時(shí),說(shuō)明選用的模型比價(jià)合適,而當(dāng)帶狀區(qū)域的寬度較大時(shí),說(shuō)明選用的模型不合適,故(2)不正確.
對(duì)于(3),在線(xiàn)性回歸分析中,相關(guān)系數(shù)為r,|r|越接近于1,則相關(guān)程度越大;|r|越接近于0,則相關(guān)程度越小.故(3)正確.
對(duì)于(4),在回歸直線(xiàn)y=0.5x85中,當(dāng)x=200時(shí),y=15,但實(shí)際觀測(cè)值可能不是15,故(4)不正確.
綜上可得(1)(3)正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin( )(A>0,ω>0,)的部分圖象如圖所示.若橫坐標(biāo)分別為-1、1、5的三點(diǎn)M,N,P都在函數(shù)f(x)的圖象上,則sin∠MNP的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市對(duì)所有高校學(xué)生進(jìn)行普通話(huà)水平測(cè)試,發(fā)現(xiàn)成績(jī)服從正態(tài)分布N(μ,σ2),下表用莖葉圖列舉出來(lái)抽樣出的10名學(xué)生的成績(jī).
(1)計(jì)算這10名學(xué)生的成績(jī)的均值和方差;
(2)給出正態(tài)分布的數(shù)據(jù):P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544.
由(1)估計(jì)從全市隨機(jī)抽取一名學(xué)生的成績(jī)?cè)冢?/span>76,97)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)同時(shí)滿(mǎn)足:
①對(duì)于定義域上的任意x恒有f(x)+f(﹣x)=0,
②對(duì)于定義域上的任意x1,x2,當(dāng)x1≠x2時(shí),恒有0,則稱(chēng)函數(shù)f(x)為“理想函數(shù)”.
給出下列四個(gè)函數(shù)中①f(x); ②f(x); ③f(x);④f(x),
能被稱(chēng)為“理想函數(shù)”的有_______________(填相應(yīng)的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點(diǎn).
(1)證明B1C1⊥CE;
(2)求二面角B1﹣CE﹣C1的正弦值.
(3)設(shè)點(diǎn)M在線(xiàn)段C1E上,且直線(xiàn)AM與平面ADD1A1所成角的正弦值為 ,求線(xiàn)段AM的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x,y恒有f(x+y)=f(x)+f(y)且當(dāng)x>0,f(x)<0.
給出下列四個(gè)結(jié)論:
①f(0)=0;②f(x)為偶函數(shù);
③f(x)為R上減函數(shù);④f(x)為R上增函數(shù).
其中正確的結(jié)論是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列中, , .
(1)求的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形的面積可無(wú)限接近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”,劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”,利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為( )
(參考數(shù)據(jù):)
A. 12 B. 24 C. 48 D. 96
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】環(huán)保組織隨機(jī)抽檢市內(nèi)某河流2015年內(nèi)100天的水質(zhì),檢測(cè)單位體積河水中重金屬含量,并根據(jù)抽檢數(shù)據(jù)繪制了如下圖所示的頻率分布直方圖.
(Ⅰ)求圖中的值;
(Ⅱ)假設(shè)某企業(yè)每天由重金屬污染造成的經(jīng)濟(jì)損失(單位:元)與單位體積河水中重金屬含量
的關(guān)系式為,若將頻率視為概率,在本年內(nèi)隨機(jī)抽取一天,試估計(jì)這天經(jīng)濟(jì)損失不超過(guò)500元的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com