【題目】已知隨機變量 ξ 的分布列為P(ξ=k)= ( k=1,2,),則 P(2<x≤4)為(
A.
B.
C.
D.

【答案】A
【解析】解:∵P(X=k)= ,k=1,2,,

∴P(2<X≤4)=P(X=3)+P(X=4)= + =

故選A.

【考點精析】解答此題的關鍵在于理解離散型隨機變量及其分布列的相關知識,掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓E的左右頂點分別為A、B,左右焦點分別為F1、F2 , |AB|=4,|F1F2|=2 ,直線y=kx+m(k>0)交橢圓于C、D兩點,與線段F1F2及橢圓短軸分別交于M、N兩點(M、N不重合),且|CM|=|DN|.
(Ⅰ)求橢圓E的離心率;
(Ⅱ)若m>0,設直線AD、BC的斜率分別為k1、k2 , 求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,BD是正方形ABCD的對角線,弧的圓心是A,半徑為AB,正方形ABCD以AB為軸旋轉,求圖中Ⅰ,Ⅱ,Ⅲ三部分旋轉所得旋轉體的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù),ω>0,|φ|<)的一個零點與之相鄰的對稱軸之間的距離為,且fx)有最小值.

(1)求的解析式;

(2)若,求fx)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)滿足f(-x-1)=f(x-1),其圖象過點(0,1),且與x軸有唯一交點。

(1)f(x)的解析式;

(2)設函數(shù)g(x)=f(x)-(2+a)x,求g(x)[1,2]上的最小值h(a)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 是正方形, 平面, , , , 分別是 , 的中點.

)求四棱錐的體積.

)求證:平面平面

)在線段上確定一點,使平面,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=ln(1+x)﹣x﹣ax2
(1)當x=1時,f(x)取到極值,求a的值;
(2)當a滿足什么條件時,f(x)在區(qū)間 上有單調遞增的區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某數(shù)學教師對所任教的兩個班級各抽取20名學生進行測試,分數(shù)分布如表,若成績120分以上(含120分)為優(yōu)秀.

分數(shù)區(qū)間

甲班頻率

乙班頻率

[0,30)

0.1

0.2

[30,60)

0.2

0.2

[60,90)

0.3

0.3

[90,120)

0.2

0.2

[120,150]

0.2

0.1

優(yōu)秀

不優(yōu)秀

總計

甲班

乙班

總計

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

(Ⅰ)求從乙班參加測試的90分以上(含90分)的同學中,隨機任取2名同學,恰有1人為優(yōu)秀的概率;
(Ⅱ)根據(jù)以上數(shù)據(jù)完成上面的2×2列聯(lián)表:在犯錯概率小于0.1的前提下,你是否有足夠的把握認為學生的數(shù)學成績是否優(yōu)秀與班級有關?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等腰梯形中(如圖1), , 邊上一點,且沿折起,使平面平面如圖2.

(1)證明:平面平面;

(2)試在棱上確定一點使截面把幾何體分成的兩部分.

查看答案和解析>>

同步練習冊答案