【題目】設(shè)A是單位圓O和x軸正半軸的交點(diǎn),P,Q是圓O上兩點(diǎn),O為坐標(biāo)原點(diǎn),∠AOP= ,∠AOQ=α,α∈[0, ].

(1)若Q( , ),求cos(α﹣ )的值;
(2)設(shè)函數(shù)f(α)=sinα( ),求f(α)的值域.

【答案】
(1)解:由已知得cosα= ,sinα= ,

∴cos( )= + × =


(2)【解答】解: =( , ), =(cosα,sinα),

= cosα+ sinα,

∴f(α)= sinαcosα+ sin2α= sin2α﹣ cos2α+ = sin(2α﹣ )+

∵α∈[0, ],∴2α﹣ ∈[﹣ , ],

∴當(dāng)2α﹣ =﹣ 時(shí),f(α)取得最小值 + =0,

當(dāng)2α﹣ = 時(shí),f(α)取得最大值 =

∴f(α)的值域是[0, ].


【解析】(1)利用兩角差的余弦公式計(jì)算;(2) 利用三角恒等變換化簡(jiǎn)f(α),再利用α的范圍和正弦函數(shù)圖像的性質(zhì)求出f(α)的值域。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖四棱錐 中,四邊形 為平行四邊形, 為等邊三角形,AABE是以 為直角的等腰直角三角形,且 .

(1)證明: 平面 平面BCE;
(2)求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50 m/min.在甲出發(fā)2 min后,乙從A乘纜車到B,在B處停留1 min后,再?gòu)?/span>B勻速步行到C.假設(shè)纜車勻速直線運(yùn)行的速度為130 m/min,山路AC長(zhǎng)為1260 m,經(jīng)測(cè)量,cos A=,cos C=

(1)求索道AB的長(zhǎng);

(2)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)獨(dú)游戲越來(lái)越受人們喜愛,今年某地區(qū)科技館組織數(shù)獨(dú)比賽,該區(qū)甲、乙、丙、丁四所學(xué)校的學(xué)生積極參賽,參賽學(xué)生的人數(shù)如表所示:

中學(xué)

人數(shù)

30

40

20

10

為了解參賽學(xué)生的數(shù)獨(dú)水平,該科技館采用分層抽樣的方法從這四所中學(xué)的參賽學(xué)生中抽取30名參加問卷調(diào)查.
(Ⅰ)問甲、乙、丙、丁四所中學(xué)各抽取多少名學(xué)生?
(Ⅱ)從參加問卷調(diào)查的30名學(xué)生中隨機(jī)抽取2名,求這2名學(xué)生來(lái)自同一所中學(xué)的概率;
(Ⅲ)在參加問卷調(diào)查的30名學(xué)生中,從來(lái)自甲、丙兩所中學(xué)的學(xué)生中隨機(jī)抽取2名,用X表示抽得甲中學(xué)的學(xué)生人數(shù),求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+ )= .圓O的參數(shù)方程為 (θ為參數(shù),r>0).
(Ⅰ)求圓O的圓心的極坐標(biāo)(ρ≥0,0≤θ<2π );
(Ⅱ)當(dāng)r為何值時(shí),圓O上的點(diǎn)到直線l的最大距離為2+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若離散型隨機(jī)變量ξ的概率分布如表所示,則a的值為( )

ξ

﹣1

1

P

4a﹣1

3a2+a


A.
B.﹣2
C. 或﹣2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐S﹣ABC中,SB⊥底面ABC,且SB=AB=2,BC= ,D、E分別是SA、SC的中點(diǎn).

(I)求證:平面ACD⊥平面BCD;
(II)求二面角S﹣BD﹣E的平面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an},{bn}滿足2Sn=(an+2)bn , 其中Sn是數(shù)列{an}的前n項(xiàng)和.
(1)若數(shù)列{an}是首項(xiàng)為 ,公比為﹣ 的等比數(shù)列,求數(shù)列{bn}的通項(xiàng)公式;
(2)若bn=n,a2=3,求證:數(shù)列{an}滿足an+an+2=2an+1 , 并寫出數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,設(shè)cn= , 求證:數(shù)列{cn}中的任意一項(xiàng)總可以表示成該數(shù)列其他兩項(xiàng)之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】空氣質(zhì)量問題,全民關(guān)注,有需求就有研究,某科研團(tuán)隊(duì)根據(jù)工地常用高壓水槍除塵原理,制造了霧霾神器﹣﹣﹣霧炮,雖然霧炮不能徹底解決問題,但是能在一定程度上起到防霾、降塵的作用,經(jīng)過測(cè)試得到霧炮降塵率的頻率分布直方圖:
若降塵率達(dá)到18%以上,則認(rèn)定霧炮除塵有效.

(1)根據(jù)以上數(shù)據(jù)估計(jì)霧炮除塵有效的概率;
(2)現(xiàn)把A市規(guī)劃成三個(gè)區(qū)域,每個(gè)區(qū)域投放3臺(tái)霧炮進(jìn)行除塵(霧炮之間工作互不影響),若在一個(gè)區(qū)域內(nèi)的3臺(tái)霧炮降塵率都低于18%,則需對(duì)該區(qū)域后期追加投入20萬(wàn)元繼續(xù)進(jìn)行治理,求后期投入費(fèi)用的分布列和期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案