在數(shù)列{an}中,如果對任意的n∈N*,都有
an+2
an+1
-
an+1
an
(λ為常數(shù)),則稱數(shù)列{an}為比等差數(shù)列,λ稱為比公差.則下列命題中真命題的序號是
①③
①③

①若數(shù)列{Fn}滿足F1=1,F(xiàn)2=1,F(xiàn)n=Fn-1+Fn-2(n≥3),則該數(shù)列不是比等差數(shù)列;
②若數(shù)列{an}滿足an=(n-1)•2n-1,則數(shù)列{an}是比等差數(shù)列,且比公差λ=2;
③“等差數(shù)列是常數(shù)列”是“等差數(shù)列成為比等差數(shù)列”的充分必要條件;
④數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N),則此數(shù)列的通項(xiàng)為an=
n•3n
3n-1
,且{an}不是比等差數(shù)列.
分析:根據(jù)比等差數(shù)列的定義
an+2
an+1
-
an+1
an
(λ為常數(shù)),逐一判斷①~④中的四個數(shù)列是否是比等差數(shù)列,即可得到答案.
解答:解:數(shù)列{Fn}滿足F1=1,F(xiàn)2=1,F(xiàn)3=2,F(xiàn)4=3,F(xiàn)5=5,
F3
F2
-
F2
F1
=1,
F4
F3
-
F3
F2
=-
1
2
≠1,則該數(shù)列不是比等差數(shù)列,
故①正確;
若數(shù)列{an}滿足an=(n-1)•2n-1,則
an+2
an+1
-
an+1
an
=
-2
(n-1)•n
不為定值,即數(shù)列{an}不是比等差數(shù)列,
故②錯誤;
等比數(shù)列
an+2
an+1
-
an+1
an
=0,滿足比等差數(shù)列的定義,若等差數(shù)列為an=n,則
an+2
an+1
-
an+1
an
=
-1
(n-1)•n
不為定值,即數(shù)列{an}不是比等差數(shù)列,故③正確;
數(shù)列{an}的通項(xiàng)公式為:an=
n•3n
3n-1
,則a1=
3
2
a2=
9
4
,a3=
81
26
a4=
81
20
,
a3
a2
-
a2
a1
=-
3
26
,
a4
a3
-
a3
a2
=-
11
130
≠-
3
26
,不滿足比等差數(shù)列的定義,故④不正確;
故答案為:①③
點(diǎn)評:本題考查新定義,解題時應(yīng)正確理解新定義,同時注意利用列舉法判斷命題為假,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6、在數(shù)列{an}中,a1=1,an=an-1+n,n≥2.為計算這個數(shù)列前10項(xiàng)的和,現(xiàn)給出該問題算法的程序框圖(如圖所示),則圖中判斷框(1)處合適的語句是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

12、在數(shù)列{an}中,若存在非零整數(shù)T,使得am+T=am對于任意的正整數(shù)m均成立,那么稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.若數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N),如x1=1,x2=a(a∈R,a≠0),當(dāng)數(shù)列{xn}的周期最小時,該數(shù)列的前2010項(xiàng)的和是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,an=an-1+n,n≥2.為計算這個數(shù)列前5項(xiàng)的和,現(xiàn)給出該問題算法的程序框圖(如圖所示),則圖中判斷框(1)處應(yīng)填
i≥5
i≥5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省佛山市南海區(qū)高考題例研究數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

在數(shù)列{an}中,a1=1,an=an-1+n,n≥2.為計算這個數(shù)列前10項(xiàng)的和,現(xiàn)給出該問題算法的程序框圖(如圖所示),則圖中判斷框(1)處合適的語句是( )

A.i≥8
B.i≥9
C.i≥10
D.i≥11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年浙江省舟山市七校高三(下)3月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

在數(shù)列{an}中,若存在非零整數(shù)T,使得am+T=am對于任意的正整數(shù)m均成立,那么稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.若數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N),如x1=1,x2=a(a∈R,a≠0),當(dāng)數(shù)列{xn}的周期最小時,該數(shù)列的前2010項(xiàng)的和是( )
A.669
B.670
C.1339
D.1340

查看答案和解析>>

同步練習(xí)冊答案